Nonlinear anisotropy growth in Bianchi-I spacetime in metric $f(R)$ cosmology

作者: Kaushik Bhattacharya , Saikat Chakraborty

DOI: 10.1103/PHYSREVD.99.023520

关键词: GravitationCosmologyMathematical physicsIsotropyQuadratic equationPhysicsBarotropic fluidNonlinear systemSpacetimeAnisotropy

摘要: The present work is related to anisotropic cosmological evolution in metric $f(R)$ theory of gravity. initial part the paper develops general dynamics homogeneous Bianchi-I spacetime cosmology. pervaded by a barotropic fluid which has isotropic pressure. predicts nonlinear growth anisotropy such spacetimes. In later we display predictive power differential equation responsible for various relevant cases. We exact solutions Starobinsky inflation driven quadratic gravity and exponential theory. Semi-analytical results are presented contraction phase bounce. examples model universe shows complex nature problem at hand.

参考文章(52)
Manabendra Sharma, Nonsingular Bouncing Model in Closed and Open universe arXiv: General Relativity and Quantum Cosmology. ,(2015)
Sukanta Panda, Manabendra Sharma, Anisotropic bouncing scenario in $F(X)-V(\phi)$ model Astrophysics and Space Science. ,vol. 361, pp. 87- ,(2016) , 10.1007/S10509-015-2594-Y
John D. Barrow, Kei Yamamoto, Anisotropic pressures at ultrastiff singularities and the stability of cyclic universes Physical Review D. ,vol. 82, pp. 063516- ,(2010) , 10.1103/PHYSREVD.82.063516
A.A. Starobinsky, A new type of isotropic cosmological models without singularity Physics Letters B. ,vol. 91, pp. 99- 102 ,(1980) , 10.1016/0370-2693(80)90670-X
Spiros Cotsakis, George Flessas, Generalized cosmic no-hair theorems Physics Letters B. ,vol. 319, pp. 69- 73 ,(1993) , 10.1016/0370-2693(93)90783-E
Chiang-Mei Chen, W. F. Kao, Stability analysis of anisotropic inflationary cosmology Physical Review D. ,vol. 64, pp. 124019- ,(2001) , 10.1103/PHYSREVD.64.124019
Sante Carloni, Peter K S Dunsby, Deon Solomons, Bounce conditions in f(R) cosmologies Classical and Quantum Gravity. ,vol. 23, pp. 1913- 1922 ,(2006) , 10.1088/0264-9381/23/6/006
J Wainwright, A A Coley, G F R Ellis, M Hancock, On the isotropy of the Universe: do Bianchi cosmologies isotropize? Classical and Quantum Gravity. ,vol. 15, pp. 331- 350 ,(1998) , 10.1088/0264-9381/15/2/008
Yi-Fu Cai, Exploring bouncing cosmologies with cosmological surveys Science China Physics, Mechanics & Astronomy. ,vol. 57, pp. 1414- 1430 ,(2014) , 10.1007/S11433-014-5512-3
Y Kitada, K Maeda, Cosmic no-hair theorem in homogeneous spacetimes. I. Bianchi models Classical and Quantum Gravity. ,vol. 10, pp. 703- 734 ,(1993) , 10.1088/0264-9381/10/4/008