Casimir forces in binary liquid mixtures

作者: Michael Krech

DOI: 10.1103/PHYSREVE.56.1642

关键词: WettingBody forceCondensed matter physicsCasimir pressurePhysicsLondon dispersion forcevan der Waals forceElectromagnetismContact forceCasimir effect

摘要: If two ore more bodies are immersed in a critical fluid fluctuations of the order parameter generate long ranged forces between these bodies. Due to underlying mechanism close analogues well known Casimir electromagnetism. For special case binary liquid mixture near its demixing transition confined simple parallel plate geometry it is shown that corresponding can be same magnitude as dispersion (van der Waals) plates. In wetting experiments or by direct measurements with an atomic force microscope resulting modification usual regime should therefore easily detectable. Analytical estimates for amplitudes Delta d=4-epsilon compared Monte-Carlo results d=3 and their quantitative effect on thickness layers discussed.

参考文章(57)
I. M. Ryzhik, I. S. Gradshteyn, Table of integrals, series and products New York: Academic Press. ,(1980)
Daniel Danchev, Finite-size scaling Casimir force function: Exact spherical-model results. Physical Review E. ,vol. 53, pp. 2104- 2109 ,(1996) , 10.1103/PHYSREVE.53.2104
J. O. Indekeu, M. P. Nightingale, W. V. Wang, Finite-size interaction amplitudes and their universality: Exact, mean-field, and renormalization-group results Physical Review B. ,vol. 34, pp. 330- 342 ,(1986) , 10.1103/PHYSREVB.34.330
M. Krech, D. P. Landau, Casimir effect in critical systems: A Monte Carlo simulation. Physical Review E. ,vol. 53, pp. 4414- 4423 ,(1996) , 10.1103/PHYSREVE.53.4414
Theodore W. Burkhardt, Erich Eisenriegler, Casimir Interaction of Spheres in a Fluid at the Critical Point Physical Review Letters. ,vol. 74, pp. 3189- 3192 ,(1995) , 10.1103/PHYSREVLETT.74.3189
E. Eisenriegler, U. Ritschel, Casimir forces between spherical particles in a critical fluid and conformal invariance. Physical Review B. ,vol. 51, pp. 13717- 13734 ,(1995) , 10.1103/PHYSREVB.51.13717
F. Freire, Denjoe O'Connor, C. R. Stephens, Dimensional crossover and finite-size scaling below T c Journal of Statistical Physics. ,vol. 74, pp. 219- 238 ,(1994) , 10.1007/BF02186813
A. Esser, V. Dohm, X.S. Chen, Field theory of finite-size effects for systems with a one-component order parameter Physica A-statistical Mechanics and Its Applications. ,vol. 222, pp. 355- 397 ,(1995) , 10.1016/0378-4371(95)00264-2