Bulk Viscous FRW Cosmology in Lyra Geometry

作者: A. PRADHAN , V. K. YADAV , INDRAJIT CHAKRABARTY

DOI: 10.1142/S0218271801000767

关键词: Classical mechanicsViscous liquidDeceleration parameterFriedmann–Lemaître–Robertson–Walker metricCosmologyGeometryVolume viscosityUniversePhysicsDisplacement fieldIsotropy

摘要: We have studied an isotropic homogeneous FRW universe in the presence of a bulk viscous fluid within framework Lyra's geometry. obtained exact solutions Sen equations assuming deceleration parameter to be constant. The coefficient viscosity has been assumed power function mass density. With this assumption, we considered behavior displacement field and energy density for both power-law exponential expansions universe. show that our models are generalised obtain results previous works by considering k=0 k=-1.

参考文章(30)
Y.S. MYUNG, B.H. CHO, ENTROPY PRODUCTION IN A HOT HETEROTIC STRING Modern Physics Letters A. ,vol. 01, pp. 37- 41 ,(1986) , 10.1142/S0217732386000075
D. K. Sen, A static cosmological model European Physical Journal. ,vol. 149, pp. 311- 323 ,(1957) , 10.1007/BF01333146
VB Johri, R Sudharsan, BD-FRW cosmology with bulk viscosity Australian Journal of Physics. ,vol. 42, pp. 215- 222 ,(1989) , 10.1071/PH890215
KS Bhamra, A Cosmological Model of Class One in Lyra's Manifold Australian Journal of Physics. ,vol. 27, pp. 541- 548 ,(1974) , 10.1071/PH740541
Gerhard Lyra, Über eine Modifikation der Riemannschen Geometrie Mathematische Zeitschrift. ,vol. 54, pp. 52- 64 ,(1951) , 10.1007/BF01175135
H. Bondi, T. Gold, The Steady-State Theory of the Expanding Universe Monthly Notices of the Royal Astronomical Society. ,vol. 108, pp. 252- 270 ,(1948) , 10.1093/MNRAS/108.3.252
G P Singh, Kalyani Desikan, A new class of cosmological models in Lyra geometry Pramana. ,vol. 49, pp. 205- 212 ,(1997) , 10.1007/BF02845856
W. D. Halford, Scalar‐Tensor Theory of Gravitation in a Lyra Manifold Journal of Mathematical Physics. ,vol. 13, pp. 1699- 1703 ,(1972) , 10.1063/1.1665894
T. M. Karade, S. M. Borikar, Thermodynamic equilibrium of a gravitating sphere in Lyra's geometry General Relativity and Gravitation. ,vol. 9, pp. 431- 436 ,(1978) , 10.1007/BF00759843
R. D. Murphy, M. L. Klein, Radial Distribution Function of Liquid Sodium Physical Review A. ,vol. 8, pp. 2640- 2644 ,(1973) , 10.1103/PHYSREVA.8.2640