作者: Jinchao Xu , Xiaozhe Hu , Jonathan Cohen , Lu Wang
DOI:
关键词: Solver 、 Multigrid method 、 Speedup 、 Rate of convergence 、 Computer science 、 Quadtree 、 CUDA 、 Parallel computing 、 Computational science 、 Grid 、 Load balancing (computing) 、 Numerical analysis
摘要: In this paper, we develop a new parallel auxiliary grid algebraic multigrid (AMG) method to leverage the power of graphic processing units (GPUs). construction hierarchical coarse grid, use simple and fixed coarsening procedure based on region quadtree generated from an grid. This allows us explicitly control sparsity patterns operator complexities AMG solver. feature provides (nearly) optimal load balancing predictable communication patterns, which makes our algorithm suitable for computing, especially GPU. We also design smoother special coloring accelerate convergence rate improve performance Based CUDA toolkit [40], implemented GPU numerical results implementation demonstrate efficiency method. The achieve average speedup over 4 quasi-uniform grids 2 shape regular when compared in CUSP.