State-Constrained Optimal Control for the Phase-Field Transition System

作者: C. Moroşanu , G. Wang

DOI: 10.1080/01630560701250119

关键词: MathematicsBoundary (topology)Maximum principleState (functional analysis)Control theoryTransition systemGradient methodField (physics)Finite element methodOptimal control

摘要: This paper deals with the existence and necessary optimality conditions for an optimal control problem governed by a phase-field transition system. The one-point boundary (time variable) state condition is considered. A numerical algorithm of gradient type implementation are reported, too.

参考文章(12)
Zhiming Chen, K.-H. Hoffmann, Numerical solutions of the optimal control problem governed by a phase field model International Series of Numerical Mathematics / Internationale Schriftenreihe zur Numerischen Mathematik / Série Internationale d’Analyse Numérique. pp. 79- 97 ,(1991) , 10.1007/978-3-0348-6418-3_5
M. Heinkenschloss, F. Troeltzsch, Analysis of the Lagrange-SQP-Newton Method for the Control of a Phase Field Equation Control and Cybernetics. ,vol. 28, pp. 177- 211 ,(1998)
Gunduz Caginalp, An analysis of a phase field model of a free boundary Archive for Rational Mechanics and Analysis. ,vol. 92, pp. 205- 245 ,(1986) , 10.1007/BF00254827
V. Barbu, Gengsheng Wang, State constrained optimal control problems governed by semilinear equations Numerical Functional Analysis and Optimization. ,vol. 21, pp. 411- 424 ,(2000) , 10.1080/01630560008816963
Gengsheng Wang, Optimal Control of Parabolic Differential Equations with Two Point Boundary State Constraints SIAM Journal on Control and Optimization. ,vol. 38, pp. 1639- 1654 ,(2000) , 10.1137/S0363012998338132
Gengsheng Wang, Optimal control of parabolic variational inequality involving state constraint Nonlinear Analysis-theory Methods & Applications. ,vol. 42, pp. 789- 801 ,(2000) , 10.1016/S0362-546X(99)00124-8
Viorel Barbu, Local controllability of the phase field system Nonlinear Analysis-theory Methods & Applications. ,vol. 50, pp. 363- 372 ,(2002) , 10.1016/S0362-546X(01)00767-2