Electrochemical Delamination and Chemical Etching of Chemical Vapor Deposition Graphene: Contrasting Properties

作者: Colin Hong An Wong , Martin Pumera

DOI: 10.1021/ACS.JPCC.6B00329

关键词: Chemical vapor depositionMaterials scienceX-ray photoelectron spectroscopyGraphene oxide paperGraphene nanoribbonsRaman spectroscopyCombustion chemical vapor depositionIsotropic etchingGrapheneNanotechnology

摘要: Recent advancements in chemical vapor deposition techniques for the growth of graphene have enabled access to large-area and high-quality film various applications. The key step determining quality final films is transfer process desired substrates, with goal minimizing amount structural modification film. Multiple methods exist this process, each method varying extent which altered. Four fundamentally different methods, including etching electrochemical delaminating, were employed obtain from grown on Ni foil resulting characterized using scanning electron microscopy, Raman spectroscopy, X-ray photoelectron cyclic voltammetry. These showed noticeable differences their material properties terms defects elemental purities, a dramatic i...

参考文章(57)
R.K. Joshi, S. Alwarappan, M. Yoshimura, V. Sahajwalla, Y. Nishina, Graphene oxide: The new membrane material Applied Materials Today. ,vol. 1, pp. 1- 12 ,(2015) , 10.1016/J.APMT.2015.06.002
Nicole Creange, Costel Constantin, Jian-Xin Zhu, Alexander V. Balatsky, Jason T. Haraldsen, Computational Investigation of the Electronic and Optical Properties of Planar Ga-Doped Graphene Advances in Condensed Matter Physics. ,vol. 2015, pp. 1- 7 ,(2015) , 10.1155/2015/635019
Xuelei Liang, Brent A. Sperling, Irene Calizo, Guangjun Cheng, Christina Ann Hacker, Qin Zhang, Yaw Obeng, Kai Yan, Hailin Peng, Qiliang Li, Xiaoxiao Zhu, Hui Yuan, Angela R. Hight Walker, Zhongfan Liu, Lian-mao Peng, Curt A. Richter, Toward Clean and Crackless Transfer of Graphene ACS Nano. ,vol. 5, pp. 9144- 9153 ,(2011) , 10.1021/NN203377T
F. M. Hu, Tianxing Ma, Hai-Qing Lin, J. E. Gubernatis, Magnetic impurities in graphene Physical Review B. ,vol. 84, pp. 075414- ,(2011) , 10.1103/PHYSREVB.84.075414
Yu Wang, Shi Wun Tong, Xiang Fan Xu, Barbaros Özyilmaz, Kian Ping Loh, Interface Engineering of Layer‐by‐Layer Stacked Graphene Anodes for High‐Performance Organic Solar Cells Advanced Materials. ,vol. 23, pp. 1514- 1518 ,(2011) , 10.1002/ADMA.201003673
John A. Rogers, Electronic materials: Making graphene for macroelectronics Nature Nanotechnology. ,vol. 3, pp. 254- 255 ,(2008) , 10.1038/NNANO.2008.115
K. K. Cline, Mark T. McDermott, Richard L. McCreery, Anomalously Slow Electron Transfer at Ordered Graphite Electrodes: Influence of Electronic Factors and Reactive Sites The Journal of Physical Chemistry. ,vol. 98, pp. 5314- 5319 ,(1994) , 10.1021/J100071A023
Yanpeng Liu, Li Yuan, Ming Yang, Yi Zheng, Linjun Li, Libo Gao, Nisachol Nerngchamnong, Chang Tai Nai, C. S. Suchand Sangeeth, Yuan Ping Feng, Christian A. Nijhuis, Kian Ping Loh, Giant enhancement in vertical conductivity of stacked CVD graphene sheets by self-assembled molecular layers Nature Communications. ,vol. 5, pp. 5461- ,(2014) , 10.1038/NCOMMS6461
Xiaobo Ji, Craig E. Banks, Alison Crossley, Richard G. Compton, Oxygenated Edge Plane Sites Slow the Electron Transfer of the Ferro-/Ferricyanide Redox Couple at Graphite Electrodes ChemPhysChem. ,vol. 7, pp. 1337- 1344 ,(2006) , 10.1002/CPHC.200600098
Biljana Šljukić, Craig E. Banks, Richard G. Compton, Iron oxide particles are the active sites for hydrogen peroxide sensing at multiwalled carbon nanotube modified electrodes. Nano Letters. ,vol. 6, pp. 1556- 1558 ,(2006) , 10.1021/NL060366V