UTLDR: an agent-based framework for modeling infectious diseases and public interventions.

作者: Giulio Rossetti , Letizia Milli , Salvatore Citraro , Virginia Morini

DOI:

关键词: Computational epidemiologyData scienceNetwork topologySevere acute respiratory syndrome coronavirus 2 (SARS-CoV-2)Interaction networkPandemicPopulationPsychological interventionFlexibility (engineering)Computer science

摘要: Nowadays, due to the SARS-CoV-2 pandemic, epidemic modelling is experiencing a constantly growing interest from researchers of heterogeneous fields study. Indeed, vast literature on computational epidemiology offers solid grounds for analytical studies and definition novel models aimed at both predictive prescriptive scenario descriptions. To ease access diffusion modelling, several programming libraries tools have been proposed during last decade: however, best our knowledge, none them explicitly designed allow its users integrate public interventions in their model. In this work, we introduce UTLDR, framework that can simulate effects (and combinations) unfolding processes. UTLDR enables design compartmental incrementally over complex interaction network topologies. Moreover, it allows integrating external information analyzed population (e.g., age, gender, geographical allocation, mobility patterns\dots) use stratify refine After introducing framework, provide few case underline flexibility expressive power.

参考文章(25)
Tamás Nepusz, Gábor Csárdi, The igraph software package for complex network research InterJournal Complex Systems. ,vol. 1695, ,(2006)
Robert M. May, Roy M. Anderson, Infectious Diseases of Humans: Dynamics and Control ,(1991)
Romualdo Pastor-Satorras, Claudio Castellano, Piet Van Mieghem, Alessandro Vespignani, Epidemic processes in complex networks Reviews of Modern Physics. ,vol. 87, pp. 925- 979 ,(2015) , 10.1103/REVMODPHYS.87.925
Suyu Liu, Nicola Perra, Márton Karsai, Alessandro Vespignani, Controlling Contagion Processes in Activity Driven Networks Physical Review Letters. ,vol. 112, pp. 118702- ,(2014) , 10.1103/PHYSREVLETT.112.118702
D. H. Barmak, C. O. Dorso, M. Otero, H. G. Solari, Dengue epidemics and human mobility Physical Review E. ,vol. 84, pp. 011901- ,(2011) , 10.1103/PHYSREVE.84.011901
Francesco Calabrese, Giusy Di Lorenzo, Liang Liu, Carlo Ratti, Estimating Origin-Destination Flows Using Mobile Phone Location Data IEEE Pervasive Computing. ,vol. 10, pp. 36- 44 ,(2011) , 10.1109/MPRV.2011.41
Romualdo Pastor-Satorras, Nicola Perra, Alessandro Vespignani, Alessandro Vespignani, Bruno Goncalves, Activity driven modeling of time varying networks Scientific Reports. ,vol. 2, pp. 469- 469 ,(2012) , 10.1038/SREP00469
Albert-László Barabási, Réka Albert, Emergence of Scaling in Random Networks Science. ,vol. 286, pp. 509- 512 ,(1999) , 10.1126/SCIENCE.286.5439.509
M. E. J. Newman, Spread of epidemic disease on networks. Physical Review E. ,vol. 66, pp. 016128- 016128 ,(2002) , 10.1103/PHYSREVE.66.016128
Lauren Alexander, Shan Jiang, Mikel Murga, Marta C. González, Origin-destination trips by purpose and time of day inferred from mobile phone data Transportation Research Part C-emerging Technologies. ,vol. 58, pp. 240- 250 ,(2015) , 10.1016/J.TRC.2015.02.018