PSEUDORANDOM NUMBER GENERATION BY p-ADIC ERGODIC TRANSFORMATIONS: AN ADDENDUM

作者: Vladimir Anashin

DOI:

关键词: UnivariateErgodic theoryCombinatoricsPseudorandom number generatorAddendumMathematicsSpace (mathematics)Sequence

摘要: The paper study counter-dependent pseudorandom number gen- erators based on m-variate (m > 1) ergodic mappings of the space 2-adic integers Z2. sequence internal states these generators is defined by recurrence law xi+1 = H B i (xi) mod 2 n , whereas their output zi F n; here xj, zj are m-dimensional vectors over It shown how results obtained for a univariate case could be extended to multivariate case.

参考文章(8)
Alexander Klimov, Adi Shamir, New cryptographic primitives based on multiword T-functions fast software encryption. pp. 1- 15 ,(2004) , 10.1007/978-3-540-25937-4_1
Vladimir Anashin, Uniformly distributed sequences of p-adic integers, II arXiv: Number Theory. ,(2002)
Alexander Klimov, Adi Shamir, A New Class of Invertible Mappings cryptographic hardware and embedded systems. pp. 470- 483 ,(2002) , 10.1007/3-540-36400-5_34
Vladimir Anashin, Pseudorandom number generation by $p$-adic ergodic transformations arXiv: Cryptography and Security. ,(2004)
V. S. Anachin, Uniformly distributed sequences ofp-adic integers Mathematical Notes. ,vol. 55, pp. 109- 133 ,(1994) , 10.1007/BF02113290
Boaz Tsaban, Adi Shamir, Guaranteeing the diversity of number generators Information & Computation. ,vol. 171, pp. 350- 363 ,(2002) , 10.1006/INCO.2001.3045
V. S. Anashin, Solvable groups with operators and commutative rings having transitive polynomials Algebra and Logic. ,vol. 21, pp. 419- 432 ,(1982) , 10.1007/BF01982203
Adi Shamir, Alexander Klimov, Cryptographic applications of T-functions Lecture Notes in Computer Science. pp. 248- 261 ,(2004)