Principal Curves for Statistical Divergences and an Application to Finance

作者: Ana Rodrigues , Charles Cavalcante

DOI: 10.3390/E20050333

关键词: GeneralizationPortfolioPrincipal curvesInformation geometryFinanceComputer scienceAdaptive procedureDivergence (statistics)Statistical modelCapital asset pricing model

摘要: This paper proposes a method for the beta pricing model under consideration of non-Gaussian returns by means generalization mean-variance and use principal curves to define divergence optimization model. We rely on q-exponential so consider properties divergences which are used describe statistical fully characterize behavior assets. derive minimum portfolio, generalizes Markowitz’s (mean-divergence) approach relying information geometrical aspects distributions Capital Asset Pricing Model (CAPM) is then derived characterization data, all approach. discuss possibility integration our into an adaptive procedure that can be search optimum points finance applications.

参考文章(21)
Shun-ichi Amari, Natural gradient works efficiently in learning Neural Computation. ,vol. 10, pp. 177- 202 ,(1998) , 10.1162/089976698300017746
Jan Mossin, Equilibrium in a Capital Asset Market Econometrica. ,vol. 34, pp. 768- ,(1966) , 10.2307/1910098
C Vignat, A Plastino, Central limit theorem and deformed exponentials Journal of Physics A: Mathematical and Theoretical. ,vol. 40, pp. F969- F978 ,(2007) , 10.1088/1751-8113/40/45/F02
Constantino Tsallis, Possible generalization of Boltzmann-Gibbs statistics Journal of Statistical Physics. ,vol. 52, pp. 479- 487 ,(1988) , 10.1007/BF01016429
Dariusz Zagrodny*, An optimality of change loss type strategy Optimization. ,vol. 52, pp. 757- 772 ,(2003) , 10.1080/02331930310001637378
Constantino Tsallis, Celia Anteneodo, Lisa Borland, Roberto Osorio, Nonextensive statistical mechanics and economics Physica A-statistical Mechanics and Its Applications. ,vol. 324, pp. 89- 100 ,(2003) , 10.1016/S0378-4371(03)00042-6
William F. Sharpe, CAPITAL ASSET PRICES: A THEORY OF MARKET EQUILIBRIUM UNDER CONDITIONS OF RISK* The Journal of Finance. ,vol. 19, pp. 425- 442 ,(1964) , 10.1111/J.1540-6261.1964.TB02865.X
Lisa Borland, Option pricing formulas based on a non-Gaussian stock price model. Physical Review Letters. ,vol. 89, pp. 098701- ,(2002) , 10.1103/PHYSREVLETT.89.098701