Embedded vision-based Monte-Carlo robot localisation without additional sensors

作者: Sven Olufs , Markus Vincze

DOI: 10.1109/AFRCON.2013.6757613

关键词: Feature extractionOdometryArtificial intelligenceMachine visionFilter (signal processing)RobotMonte Carlo methodEngineeringComputer visionMobile robotDead reckoning

摘要: This paper presents a fast approach for vision-based self-localisation in the RoboCup middle size league without additional e.g. dead reckoning sensors. An omni-directional vision system extracts few features from image that are mapped to an sparse a-priori known map of environment using Monte Carlo filters. The filters also used model virtual odometry (mass-inertia model) which is maintained through filter itself. precision directly compared traditional identical data. We show stable and reactive while keeping processing time low.

参考文章(6)
Wolfram Burgard, Sebastian Thrun, Dieter Fox, Monte Carlo Localization with Mixture Proposal Distribution national conference on artificial intelligence. pp. 859- 865 ,(2000)
Felix von Hundelshausen, Michael Schreiber, Raúl Rojas, A constructive feature detection approach for robotic vision robot soccer world cup. pp. 72- 83 ,(2005) , 10.1007/978-3-540-32256-6_6
Frank Dellaert, Wolfram Burgard, Sebastian Thrun, Dieter Fox, Monte Carlo localization: efficient position estimation for mobile robots national conference on artificial intelligence. pp. 343- 349 ,(1999)
Hannes Schulz, Sven Behnke, None, Utilizing the Structure of Field Lines for Efficient Soccer Robot Localization Advanced Robotics. ,vol. 26, pp. 1603- 1621 ,(2012) , 10.1080/01691864.2012.694645
E. Menegatti, A. Pretto, E. Pagello, Testing omnidirectional vision-based Monte Carlo localization under occlusion intelligent robots and systems. ,vol. 3, pp. 2487- 2493 ,(2004) , 10.1109/IROS.2004.1389782
Sebastian Thrun, Dieter Fox, Wolfram Burgard, Frank Dellaert, Robust Monte Carlo localization for mobile robots Artificial Intelligence. ,vol. 128, pp. 99- 141 ,(2001) , 10.1016/S0004-3702(01)00069-8