Path integral solutions for non-Markovian processes

作者: Peter H�nggi

DOI: 10.1007/BF01308011

关键词: Shot noiseGaussian processMathematical analysisAction (physics)Noise (electronics)Path integral formulationBistabilityPhysicsNonlinear systemColors of noise

摘要: For a nonlinear stochastic flow driven by Markovian or non-Markovian colored noise ζ(t) we present the path integral solution for single-event probabilityp(x,t). The has structure of complex-valued double integral. Explicit formulas action functional, i.e., Onsager-Machlup are derived case that is characterized stationary Gaussian process. Moreover, derive explicit results (generalized) Poissonian shot ζ(t). use elucidated weak analysis WKB-type. As simple application, consider bistability with an extremely long correlation time.

参考文章(16)
R. Rajaraman, Solitons and instantons ,(1982)
Albert Roach Hibbs, Richard Phillips Feynman, Quantum Mechanics and Path Integrals ,(1965)
Ulrich Weiss, Decay of unstable states in macroscopic systems Physical Review A. ,vol. 25, pp. 2444- 2447 ,(1982) , 10.1103/PHYSREVA.25.2444
Peter Hanggi, Peter Talkner, First-passage time problems for non-Markovian processes. Physical Review A. ,vol. 32, pp. 1934- 1937 ,(1985) , 10.1103/PHYSREVA.32.1934
Peter Jung, Peter Hänggi, Bistability and colored noise in nonequilibrium systems: Theory versus precise numerics. Physical Review Letters. ,vol. 61, pp. 11- 14 ,(1988) , 10.1103/PHYSREVLETT.61.11
B. Jouvet, R. Phythian, Quantum aspects of classical and statistical fields Physical Review A. ,vol. 19, pp. 1350- 1355 ,(1979) , 10.1103/PHYSREVA.19.1350
R Phythian, The functional formalism of classical statistical dynamics Journal of Physics A. ,vol. 10, pp. 777- 789 ,(1977) , 10.1088/0305-4470/10/5/011
L. S. Schulman, Cecile Dewitt‐Morette, Techniques and Applications of Path Integration ,(2005)