High-order discontinuous Galerkin computation of axisymmetric transonic flows in safety relief valves

作者: F. Bassi , F. Cecchi , N. Franchina , S. Rebay , M. Savini

DOI: 10.1016/J.COMPFLUID.2011.05.015

关键词: Discontinuous Galerkin methodComputational fluid dynamicsTurbulenceMathematicsInviscid flowTransonicMechanicsClassical mechanicsFlow (mathematics)Reynolds-averaged Navier–Stokes equationsRiemann solver

摘要: This paper presents a discontinuous Galerkin (DG) discretization of the compressible RANS and k- ω turbulence model equations for two-dimensional axisymmetric flows. The developed code has been applied to investigate transonic flow in safety relief valves.This new DG implementation evolved from method presented [1]. An "exact" Riemann solver is used compute interface numerical inviscid flux while viscous discterization relies on BRMPS scheme [2,3]. Control oscillations high-order solutions around shocks obtained by means shock-capturing technique assessed within EU ADIGMA project [4].The spring loaded valve at several back pressures different disk lifts. predicted device capacity pressure inside its bonnet have checked against experimental data. CFD simulations allow clarify complex patterns occurring explain measured trends.

参考文章(21)
F. Bassi, L. Botti, A. Colombo, A. Crivellini, N. Franchina, A. Ghidoni, S. Rebay, Very High-Order Accurate Discontinuous Galerkin Computation of Transonic Turbulent Flows on Aeronautical Configurations Springer, Berlin, Heidelberg. ,vol. 113, pp. 25- 38 ,(2010) , 10.1007/978-3-642-03707-8_3
Gérard Bois, 4 th European Conference on Turbomachinery Fluid dynamics and Thermodynamics Local Conference Organising Committee. pp. 1- 1500 ,(2001)
F. Bassi, S. Rebay, GMRES Discontinuous Galerkin Solution of the Compressible Navier-Stokes Equations Springer, Berlin, Heidelberg. pp. 197- 208 ,(2000) , 10.1007/978-3-642-59721-3_14
F. R. Menter, Two-equation eddy-viscosity turbulence models for engineering applications AIAA Journal. ,vol. 32, pp. 1598- 1605 ,(1994) , 10.2514/3.12149
J. JAFFRE, C. JOHNSON, A. SZEPESSY, CONVERGENCE OF THE DISCONTINUOUS GALERKIN FINITE ELEMENT METHOD FOR HYPERBOLIC CONSERVATION LAWS Mathematical Models and Methods in Applied Sciences. ,vol. 05, pp. 367- 386 ,(1995) , 10.1142/S021820259500022X
Bernardo Cockburn, San-Yih Lin, Chi-Wang Shu, TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws III: one-dimensional systems Journal of Computational Physics. ,vol. 84, pp. 90- 113 ,(1989) , 10.1016/0021-9991(89)90183-6
V. Dossena, P. Gaetani, F. Marinoni, C. Osnaghi, On the Influence of Back Pressure and Size on the Performance of Safety Valves ASME 2002 Pressure Vessels and Piping Conference. pp. 35- 41 ,(2002) , 10.1115/PVP2002-1514
Ralf Hartmann, Joachim Held, Tobias Leicht, Adjoint-based error estimation and adaptive mesh refinement for the RANS and k–ω turbulence model equations Journal of Computational Physics. ,vol. 230, pp. 4268- 4284 ,(2011) , 10.1016/J.JCP.2010.10.026