Quantile Regression with Shape-Constrained Varying Coefficients

作者: Mi-Ok Kim

DOI:

关键词: SmoothingConvexityApplied mathematicsRate of convergenceAsymptotic distributionSpline (mathematics)MathematicsPointwiseMonotonic functionEstimatorMathematical optimization

摘要: Although much research has been devoted to shape-constrained function estimation, the efforts have practically confined case of univariate smoothing where unknown is a single variable. We extend estimation general class constrained nonparametric or semi-parametric regression component can be described by one-dimensional smooth functions. Built on ideas He and Shi (1998) Ng (1999), we consider quantile with shape coefficient B-splinesare used approximate functions, constrain ts are imposed spline coefficients. The method implemented w ith any existing linear program knot selection algorithm. show that does not compromise smoothness estimators, flexibility model computational efficiency. Asymptotic results con strained B-spline estimators same rate convergence normal limiting distribution as unconstrained estimators. accommodate linearizable constraints such convexity/concavity, monotonicity, periodicity pointwise constraints.

参考文章(25)
Li-Shan Huang, Peter Hall, NONPARAMETRIC KERNEL REGRESSION SUBJECT TO MONOTONICITY CONSTRAINTS Annals of Statistics. ,vol. 29, pp. 624- 647 ,(2001) , 10.1214/AOS/1009210683
Stephen Portnoy, Roger Koenker, Ronald A. Thisted, M. R. Osborne, Stephen Portnoy, Roger Koenker, The Gaussian hare and the Laplacian tortoise: computability of squared-error versus absolute-error estimators Statistical Science. ,vol. 12, pp. 279- 300 ,(1997) , 10.1214/SS/1030037960
ROGER KOENKER, PIN NG, STEPHEN PORTNOY, Quantile smoothing splines Biometrika. ,vol. 81, pp. 673- 680 ,(1994) , 10.1093/BIOMET/81.4.673
Roger Koenker, Stephen Portnoy, L-Estimation for Linear Models Journal of the American Statistical Association. ,vol. 82, pp. 851- 857 ,(1987) , 10.1080/01621459.1987.10478508
E. Mammen, J. S. Marron, B. A. Turlach, M. P. Wand, A General Projection Framework for Constrained Smoothing Statistical Science. ,vol. 16, pp. 232- 248 ,(2001) , 10.1214/SS/1009213727
Peter Hall, Brett Presnell, Density Estimation under Constraints Journal of Computational and Graphical Statistics. ,vol. 8, pp. 259- 277 ,(1999) , 10.1080/10618600.1999.10474813
J. O. Ramsay, Estimating smooth monotone functions Journal of the Royal Statistical Society: Series B (Statistical Methodology). ,vol. 60, pp. 365- 375 ,(1998) , 10.1111/1467-9868.00130
Peter Hall, Li-Shan Huang, James A Gifford, Irene Gijbels, Nonparametric estimation of hazard rate under the constraint of monotonicity Journal of Computational and Graphical Statistics. ,vol. 10, pp. 592- 614 ,(2001) , 10.1198/106186001317115135
Charles J. Stone, Mark H. Hansen, Charles Kooperberg, Young K. Truong, Polynomial splines and their tensor products in extended linear modeling: 1994 Wald memorial lecture Annals of Statistics. ,vol. 25, pp. 1371- 1470 ,(1997) , 10.1214/AOS/1031594728
Xuming He, Peide Shi, MonotoneB-Spline Smoothing Journal of the American Statistical Association. ,vol. 93, pp. 643- 650 ,(1998) , 10.1080/01621459.1998.10473717