Faraday cage screening reveals intrinsic aspects of the van der Waals attraction

作者: Musen Li , Jeffrey R. Reimers , John F. Dobson , Tim Gould

DOI: 10.1073/PNAS.1811569115

关键词: Dispersion (chemistry)Ionic bondingPhysicsAttractionGrapheneFaraday cagevan der Waals forceBilayerChemical physicsLondon dispersion force

摘要: General properties of the recently observed screening van der Waals (vdW) attraction between a silica substrate and tip by insertion graphene are predicted using basic theory first-principles calculations. Results then focused on possible practical applications, as well an understanding nature vdW attraction, considering recent discoveries showing it competing against covalent ionic bonding. The traditional view arising from pairwise-additive London dispersion forces is considered Grimme’s “D3” method, comparing results to those Tkatchenko’s more general many-body (MBD) approach, all interpreted in terms Dobson’s framework. Encompassing experimental results, MBD force two bilayers shown scale up medium separations 1.25 de/d, where d bilayer separation de its equilibrium value, depicting antiscreening approaching inside de. Means unifying this correlation effect with included modern density functionals urgently required.

参考文章(82)
Reinhard J. Maurer, Victor G. Ruiz, Alexandre Tkatchenko, Many-body dispersion effects in the binding of adsorbates on metal surfaces The Journal of Chemical Physics. ,vol. 143, pp. 102808- 102808 ,(2015) , 10.1063/1.4922688
Per Hyldgaard, Bengt I. Lundqvist, T. Thonhauser, Kristian Berland, Elsebeth Schröder, Kyuho Lee, Valentino R. Cooper, van der Waals forces in density functional theory: The vdW-DF method arXiv: Materials Science. ,(2014) , 10.1088/0034-4885/78/6/066501
E.M. LIFSHITZ, M. Hamermesh, The theory of molecular attractive forces between solids Sov.Phys.JETP. ,vol. 2, pp. 73- 83 ,(1956) , 10.1016/B978-0-08-036364-6.50031-4
Haowei Peng, Zeng-Hui Yang, John P. Perdew, Jianwei Sun, SCAN+rVV10: A promising van der Waals density functional arXiv: Materials Science. ,(2015) , 10.1103/PHYSREVX.6.041005
LM Woods, Diego Alejandro Roberto Dalvit, Alexandre Tkatchenko, P Rodriguez-Lopez, Alejandro W Rodriguez, R Podgornik, Materials perspective on Casimir and van der Waals interactions Reviews of Modern Physics. ,vol. 88, pp. 045003- ,(2016) , 10.1103/REVMODPHYS.88.045003
G. Kresse, D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method Physical Review B. ,vol. 59, pp. 1758- 1775 ,(1999) , 10.1103/PHYSREVB.59.1758
John P. Perdew, Kieron Burke, Matthias Ernzerhof, Generalized Gradient Approximation Made Simple Physical Review Letters. ,vol. 77, pp. 3865- 3868 ,(1996) , 10.1103/PHYSREVLETT.77.3865
Kyuho Lee, Éamonn D. Murray, Lingzhu Kong, Bengt I. Lundqvist, David C. Langreth, Higher-accuracy van der Waals density functional Physical Review B. ,vol. 82, pp. 081101- ,(2010) , 10.1103/PHYSREVB.82.081101
R. Włodarczyk, M. Sierka, J. Sauer, D. Löffler, J. J. Uhlrich, X. Yu, B. Yang, I. M. N. Groot, S. Shaikhutdinov, H.-J. Freund, Tuning the electronic structure of ultrathin crystalline silica films on Ru(0001) Physical Review B. ,vol. 85, pp. 085403- ,(2012) , 10.1103/PHYSREVB.85.085403
Vivekanand V. Gobre, Alexandre Tkatchenko, Scaling Laws for van der Waals Interactions in Nanostructured Materials Nature Communications. ,vol. 4, pp. 2341- 2341 ,(2013) , 10.1038/NCOMMS3341