Fast Bayesian Estimation of Spatial Count Data Models

作者: Daniel J. Graham , Prateek Bansal , Rico Krueger

DOI:

关键词: AlgorithmMarkov chain Monte CarloInferenceSpatial dependenceBayes estimatorBayes' theoremComputer scienceBayesian probabilityNegative binomial distribution

摘要: Spatial count data models are used to explain and predict the frequency of phenomena such as traffic accidents in geographically distinct entities census tracts or road segments. These typically estimated using Bayesian Markov chain Monte Carlo (MCMC) simulation methods, which, however, computationally expensive do not scale well large datasets. Variational Bayes (VB), a method from machine learning, addresses shortcomings MCMC by casting estimation an optimisation problem instead problem. In this paper, we derive VB for posterior inference negative binomial with unobserved parameter heterogeneity spatial dependence. The proposed uses Polya-Gamma augmentation deal non-conjugacy likelihood integrated non-factorised specification variational distribution capture dependencies. We demonstrate benefits approach simulated real on youth pedestrian injury counts New York City boroughs Bronx Manhattan. empirical analysis suggests that is between 7 13 times faster than regular eight-core processor, while offering similar predictive accuracy. Conditional availability computational resources, embarrassingly parallel architecture can be exploited further accelerate up 100 times.

参考文章(55)
Michael I Jordan, Zoubin Ghahramani, Tommi S Jaakkola, Lawrence K Saul, None, An introduction to variational methods for graphical models Machine Learning. ,vol. 37, pp. 105- 161 ,(1999) , 10.1023/A:1007665907178
Paola Sebastiani, A. Philip Dawid, Coherent dispersion criteria for optimal experimental design Annals of Statistics. ,vol. 27, pp. 65- 81 ,(1999) , 10.1214/AOS/1018031101
Greg M. Allenby, Peter E. Rossi, Bayesian Statistics and Marketing Social Science Research Network. ,(2002) , 10.2139/SSRN.320740
Nicholas G. Polson, James G. Scott, Jesse Windle, Sampling P olya-Gamma random variates: alternate and approximate techniques arXiv: Computation. ,(2014)
Sergio J. Rey, Luc Anselin, PySAL: A Python Library of Spatial Analytical Methods Handbook of Applied Spatial Analysis. ,vol. 37, pp. 175- 193 ,(2010) , 10.1007/978-3-642-03647-7_11
Scott W. Linderman, Ryan P. Adams, Matthew J. Johnson, Dependent multinomial models made easy: stick breaking with the Pólya-gamma augmentation neural information processing systems. ,vol. 28, pp. 3456- 3464 ,(2015)
Chong Wang, David M. Blei, Variational inference in nonconjugate models Journal of Machine Learning Research. ,vol. 14, pp. 1005- 1031 ,(2013) , 10.5555/2567709.2502613
James E. Matheson, Robert L. Winkler, Scoring Rules for Continuous Probability Distributions Management Science. ,vol. 22, pp. 1087- 1096 ,(1976) , 10.1287/MNSC.22.10.1087
Awad H. Al-Mohy, Nicholas J. Higham, A New Scaling and Squaring Algorithm for the Matrix Exponential SIAM Journal on Matrix Analysis and Applications. ,vol. 31, pp. 970- 989 ,(2009) , 10.1137/09074721X
James P. LeSage, R. Kelley Pace, A matrix exponential spatial specification Journal of Econometrics. ,vol. 140, pp. 190- 214 ,(2007) , 10.1016/J.JECONOM.2006.09.007