Analysis of the Computational Singular Perturbation Reduction Method for Chemical Kinetics

作者: A. Zagaris , H.G. Kaper , T.J. Kaper

DOI: 10.1007/S00332-003-0582-9

关键词: Reduction (complexity)Order (ring theory)Curse of dimensionalityApplied mathematicsScale (ratio)Asymptotic expansionSingular perturbationSlow manifoldMathematicsMathematical analysisKinetics

摘要: … In that case, the slow subspace of the leading-order Jacobian coincides with the tangent space TpM0 at any … 2 are tangent to M0 to leading order. In turn, this implies that the rows of B1 …

参考文章(30)
Desineni S Naidu, Singular perturbations and time scales in control theory and applications: An overview Dynamics of Continuous, Discrete and Impulsive Systems Series B: Application and Algorithm. ,vol. 9, pp. 233- 278 ,(2002)
Christopher K. R. T. Jones, Geometric singular perturbation theory Springer Berlin Heidelberg. pp. 44- 118 ,(1995) , 10.1007/BFB0095239
Alan Fersht, Enzyme structure and mechanism ,(1977)
S.H. Lam, D.A. Goussis, Understanding complex chemical kinetics with computational singular perturbation Symposium (International) on Combustion. ,vol. 22, pp. 931- 941 ,(1989) , 10.1016/S0082-0784(89)80102-X
Anil V. Rao, Riccati Dichotomic Basis Method for Solving Hypersensitive Optimal Control Problems Journal of Guidance, Control, and Dynamics. ,vol. 26, pp. 185- 189 ,(2003) , 10.2514/2.5035
Xavier Cabre, Ernest Fontich, Rafael de la Llave, The parameterization method for invariant manifolds I: manifolds associated to non-resonant subspaces Indiana University Mathematics Journal. ,vol. 52, pp. 283- 328 ,(2003) , 10.1512/IUMJ.2003.52.2245