On the Morse inequalities for geodesics on Lorentzian manifolds

作者: A. Abbondandolo , V. Benci , D. Fortunato , A. Masiello

DOI: 10.4310/MRL.2003.V10.N4.A3

关键词: Mathematical analysisMorse codeMorse theoryCausal structureMathematicsPure mathematicsGeodesicCircle-valued Morse theory

摘要:

参考文章(16)
Alberto Abbondandolo, Morse Theory for Hamiltonian Systems ,(2001)
Masiello Antonio, Variational methods in Lorentzian geometry Chapman and Hall/CRC. ,(2017) , 10.1201/9780203734445
Tilla Weinstein, An Introduction to Lorentz Surfaces ,(1996)
Spiros Cotsakis, Yvonne Choquet-Bruhat, Global hyperbolicity and completeness Journal of Geometry and Physics. ,vol. 43, pp. 345- 350 ,(2002) , 10.1016/S0393-0440(02)00028-1
E. Fadell, S. Husseini, Category of loop spaces of open subsets in Euclidean space Nonlinear Analysis-theory Methods & Applications. ,vol. 17, pp. 1153- 1161 ,(1991) , 10.1016/0362-546X(91)90234-R
Richard S. Palais, Morse theory on Hilbert manifolds Topology. ,vol. 2, pp. 299- 340 ,(1963) , 10.1016/0040-9383(63)90013-2
Paul H. Rabinowitz, Periodic solutions of hamiltonian systems Communications on Pure and Applied Mathematics. ,vol. 31, pp. 157- 184 ,(1978) , 10.1002/CPA.3160310203
Andrzej Szulkin, Cohomology and Morse theory for strongly indefinite functionals Mathematische Zeitschrift. ,vol. 209, pp. 375- 418 ,(1992) , 10.1007/BF02570842