Efficient and generalizable statistical models of shape and appearance for analysis of cardiac MRI.

作者: Alexander Andreopoulos , John K. Tsotsos

DOI: 10.1016/J.MEDIA.2007.12.003

关键词: Active shape modelOptimization algorithmHigh dimensionalArtificial intelligenceOptimization problemSegmentationMr imagesComputer visionStatistical modelMathematicsActive appearance model

摘要: Abstract We present a framework for the analysis of short axis cardiac MRI, using statistical models shape and appearance. The integrates temporal structural constraints avoids common optimization problems inherent in such high dimensional models. first contribution is introduction an algorithm fitting 3D active appearance (AAMs) on MRI. observe 44-fold increase speed segmentation accuracy that par with Gauss–Newton optimization, one most widely used algorithms problems. second involves investigation hierarchical 2D + time (ASMs), integrate simultaneously improve AAM based segmentation. obtain encouraging results (endocardial/epicardial error 1.43 ± 0.49 mm/1.51 ± 0.48 mm) 7980 MR images acquired from 33 subjects. have placed our dataset online, community to use build upon.

参考文章(46)
Penelop Gaddum-Rosse, Cornelius Rosse, Hollinshead's Textbook of Anatomy ,(1997)
Steve Abbott, Alexander V. Panfilov, Arun V. Holden, Computational biology of the heart The Mathematical Gazette. ,vol. 82, pp. 157- 157 ,(1998) , 10.2307/3620195
Mikaël Rousson, Nikos Paragios, Rachid Deriche, Implicit Active Shape Models for 3D Segmentation in MR Imaging medical image computing and computer assisted intervention. pp. 209- 216 ,(2004) , 10.1007/978-3-540-30135-6_26
Tuomas Tölli, Juha Koikkalainen, Kirsi Lauerma, Jyrki Lötjönen, Artificially Enlarged Training Set in Image Segmentation Medical Image Computing and Computer-Assisted Intervention – MICCAI 2006. ,vol. 9, pp. 75- 82 ,(2006) , 10.1007/11866565_10
Marleen de Bruijne, Bram van Ginneken, Max A. Viergever, Wiro J. Niessen, Adapting Active Shape Models for 3D segmentation of tubular structures in medical images. information processing in medical imaging. ,vol. 18, pp. 136- 147 ,(2003) , 10.1007/978-3-540-45087-0_12
Ping Yan, Ning Lin, Albert J. Sinusas, James S. Duncan, A Boundary Element-Based Approach to Analysis of LV Deformation Lecture Notes in Computer Science. ,vol. 8, pp. 778- 785 ,(2005) , 10.1007/11566465_96
David T. Gering, Automatic Segmentation of Cardiac MRI medical image computing and computer assisted intervention. pp. 524- 532 ,(2003) , 10.1007/978-3-540-39899-8_65
Mikkel Bille Stegmann, Bjarne Kjær Ersbøll, Rasmus Larsen, Generative Interpretation of Medical Images ,(2004)
J. Lötjönen, K. Antila, E. Lamminmäki, J. Koikkalainen, M. Lilja, T. Cootes, Artificial Enlargement of a Training Set for Statistical Shape Models: Application to Cardiac Images Functional Imaging and Modeling of the Heart. pp. 92- 101 ,(2005) , 10.1007/11494621_10
L.D. Cohen, I. Cohen, Deformable models for 3-D medical images using finite elements and balloons computer vision and pattern recognition. pp. 592- 598 ,(1992) , 10.1109/CVPR.1992.223130