Direct determination of the ionization energy of histidine with VUV synchrotron radiation

作者: Kevin R. Wilson , Leonid Belau , Christophe Nicolas , Michael Jimenez-Cruz , Stephen R. Leone

DOI: 10.1016/J.IJMS.2005.12.044

关键词: IonizationIonization energyChemistryMolar ionization energies of the elementsAtmospheric-pressure laser ionizationBond-dissociation energyFragmentation (mass spectrometry)IonPhotoionizationAtomic physics

摘要: Abstract Intact molecules of histidine are generated in the gas phase using impaction nanoparticles on a heater. The direct determination ionization energy (IE) (155 m / z ) is performed single photon with tunable vacuum ultraviolet (VUV) synchrotron radiation and reported to be 8.2(±0.1) eV. Ab initio calculations at B3LYP/6-311G (UB3LYP/6-311G) level theory generating vertical adiabatic energies possible fragmentation mechanisms. theoretical derived for two lying conformers agree very well experimental result. Thermal dissociation heater gives rise fragments, which subsequently photoionized 82 111, while 110 formed by dissociative photoionization cation. Appearance fragment ions 82, 111 8.5(±0.1), 8.5(±0.1) 8.4(±0.1) eV, respectively, temperature 373 K. H-atom protonated 4.8(±0.1) eV thermodynamic arguments.

参考文章(34)
Ivan Powis, Emma E. Rennie, Uwe Hergenhahn, Oliver Kugeler, Reagan Bussy-Socrate, Investigation of the Gas-Phase Amino Acid Alanine by Synchrotron Radiation Photoelectron Spectroscopy Journal of Physical Chemistry A. ,vol. 107, pp. 25- 34 ,(2003) , 10.1021/JP0266345
Houssain El Aribi, Galina Orlova, Alan C. Hopkinson, K. W. Michael Siu, Gas-Phase Fragmentation Reactions of Protonated Aromatic Amino Acids: Concomitant and Consecutive Neutral Eliminations and Radical Cation Formations Journal of Physical Chemistry A. ,vol. 108, pp. 3844- 3853 ,(2004) , 10.1021/JP0374915
J�rgen Grotemeyer, Edward W. Schlag, Multiphoton-Ionization-Mass Spectrometry (MUPI-MS) [New Analytical Methods (34)] Angewandte Chemie International Edition in English. ,vol. 27, pp. 447- 459 ,(1988) , 10.1002/ANIE.198804473
P. G. Simmonds, E. E. Medley, M. A. Ratcliff, G. P. Shulman, Thermal decomposition of aliphatic monoaminomonocarboxylic acids Analytical Chemistry. ,vol. 44, pp. 2060- 2066 ,(1972) , 10.1021/AC60320A040
Nyla N. Dookeran, Talat Yalcin, Alex. G. Harrison, Fragmentation reactions of protonated α-amino acids Journal of Mass Spectrometry. ,vol. 31, pp. 500- 508 ,(1996) , 10.1002/(SICI)1096-9888(199605)31:5<500::AID-JMS327>3.0.CO;2-Q
R. Weinkauf, E. W. Schlag, T. J. Martinez, R. D. Levine, Nonstationary Electronic States and Site-Selective Reactivity Journal of Physical Chemistry A. ,vol. 101, pp. 7702- 7710 ,(1997) , 10.1021/JP9715742
Françoise Rogalewicz, Yannik Hoppilliard, Gilles Ohanessian, Fragmentation mechanisms of α-amino acids protonated under electrospray ionization: a collisional activation and ab initio theoretical study International Journal of Mass Spectrometry. ,vol. 195, pp. 565- 590 ,(2000) , 10.1016/S1387-3806(99)00225-0
Z Meng, The use of mass spectrometry in genomics. Biomolecular Engineering. ,vol. 21, pp. 1- 13 ,(2004) , 10.1016/J.BIOENG.2003.08.001
Giuseppe Chiavari, Guido C. Galletti, Pyrolysis—gas chromatography/mass spectrometry of amino acids Journal of Analytical and Applied Pyrolysis. ,vol. 24, pp. 123- 137 ,(1992) , 10.1016/0165-2370(92)85024-F
Ruedi Aebersold, Matthias Mann, Mass spectrometry-based proteomics Nature. ,vol. 422, pp. 198- 207 ,(2003) , 10.1038/NATURE01511