Stress State of a Transversely Isotropic Medium with an Arbitrarily Oriented Spheroidal Inclusion

作者: V. S. Kirilyuk , O. I. Levchuk

DOI: 10.1007/S10778-005-0069-5

关键词: Superposition principleFourier transformTransverse isotropyStress (mechanics)Stress concentrationGaussian quadratureMathematical analysisMathematicsMultiple integralSpace (mathematics)

摘要: The stress-concentration problem for an elastic transversely isotropic medium containing arbitrarily oriented spheroidal inclusion (inhomogeneity) is solved. stress state in the space represented as superposition of principal and perturbed due to inhomogeneity. solved using equivalent-inclusion method, triple Fourier transform variables, Fourier-transformed Green function infinite anisotropic medium. Double integrals over a finite domain are evaluated Gaussian quadrature formulas. In special cases, results compared with those obtained by other authors. influence geometry orientation properties on concentration studied

参考文章(12)
V. S. Kirilyuk, The stress state of an elastic medium with an elliptic crack and two ellipsoidal cavities International Applied Mechanics. ,vol. 39, pp. 829- 839 ,(2003) , 10.1023/A:1026277824212
A. I. Lurie, Alexander Belyaev, Three-dimensional problems in the theory of elasticity Springer, Berlin, Heidelberg. pp. 243- 407 ,(2005) , 10.1007/978-3-540-26455-2_5
V. T. Golovchan, Solution of triply periodic problems in the statics of an elastic body with spherical inclusions International Applied Mechanics. ,vol. 22, pp. 623- 631 ,(1986) , 10.1007/BF00889118
T. Mura, D. M. Barnett, Micromechanics of defects in solids ,(1982)
Yurii Nikolaevich Podil'chuk, O. G. Dashko, The Stress–Strain State of an Elastic Ferromagnetic Medium with an Ellipsoidal Inclusion in a Homogeneous Magnetic Field International Applied Mechanics. ,vol. 39, pp. 802- 811 ,(2003) , 10.1023/A:1026221606465
D. M. Barnett, The precise evaluation of derivatives of the anisotropic elastic Green's functions Physica Status Solidi (b). ,vol. 49, pp. 741- 748 ,(1972) , 10.1002/PSSB.2220490238
H. A. Elliott, N. F. Mott, Three-dimensional stress distributions in hexagonal aeolotropic crystals Mathematical Proceedings of the Cambridge Philosophical Society. ,vol. 44, pp. 522- 533 ,(1948) , 10.1017/S0305004100024531
J.D. Eshelby, The Continuum Theory of Lattice Defects Journal of Physics C: Solid State Physics. ,vol. 3, pp. 79- 144 ,(1956) , 10.1016/S0081-1947(08)60132-0