作者: V. S. Kirilyuk , O. I. Levchuk
DOI: 10.1007/S10778-005-0069-5
关键词: Superposition principle 、 Fourier transform 、 Transverse isotropy 、 Stress (mechanics) 、 Stress concentration 、 Gaussian quadrature 、 Mathematical analysis 、 Mathematics 、 Multiple integral 、 Space (mathematics)
摘要: The stress-concentration problem for an elastic transversely isotropic medium containing arbitrarily oriented spheroidal inclusion (inhomogeneity) is solved. stress state in the space represented as superposition of principal and perturbed due to inhomogeneity. solved using equivalent-inclusion method, triple Fourier transform variables, Fourier-transformed Green function infinite anisotropic medium. Double integrals over a finite domain are evaluated Gaussian quadrature formulas. In special cases, results compared with those obtained by other authors. influence geometry orientation properties on concentration studied