On Householder sets for matrix polynomials

作者: Thomas R. Cameron , Panayiotis J. Psarrakos

DOI: 10.1016/J.LAA.2019.09.037

关键词: Set (abstract data type)Algebraic propertiesGeneralizationMatrix polynomialMathematicsEigenvalues and eigenvectorsCombinatoricsMatrix (mathematics)

摘要: Abstract We present a generalization of Householder sets for matrix polynomials. After defining these sets, we analyze their topological and algebraic properties, which include containing all the eigenvalues given polynomial. Then, use instances to derive Gersgorin set, weighted pseudospectra Finally, show that are intimately connected Bauer-Fike theorem by using Bauer-Fike-type bounds

参考文章(18)
Lloyd N. Trefethen, Mark Embree, Spectra and Pseudospectra Princeton University Press. ,(2005) , 10.1515/9780691213101
Ji-guang Sun, G. W. Stewart, Matrix perturbation theory ,(1990)
Richard S. Varga, Geršgorin and his circles ,(2004)
Walter Rudin, Real and complex analysis ,(1966)
Lyonell Boulton, Peter Lancaster, Panayiotis Psarrakos, On pseudospectra of matrix polynomials and their boundaries Mathematics of Computation. ,vol. 77, pp. 313- 334 ,(2008) , 10.1090/S0025-5718-07-02005-4
Sk. Safique Ahmad, Rafikul Alam, Pseudospectra, critical points and multiple eigenvalues of matrix polynomials Linear Algebra and its Applications. ,vol. 430, pp. 1171- 1195 ,(2009) , 10.1016/J.LAA.2008.10.019
Françoise Tisseur, Nicholas J. Higham, Structured Pseudospectra for Polynomial Eigenvalue Problems, with Applications SIAM Journal on Matrix Analysis and Applications. ,vol. 23, pp. 187- 208 ,(2001) , 10.1137/S0895479800371451
J. H. Wilkinson, The algebraic eigenvalue problem ,(1965)
Peter Lancaster, Panayiotis Psarrakos, On the Pseudospectra of Matrix Polynomials SIAM Journal on Matrix Analysis and Applications. ,vol. 27, pp. 115- 129 ,(2005) , 10.1137/S0895479804441420
David Bindel, Amanda Hood, Localization Theorems for Nonlinear Eigenvalue Problems SIAM Journal on Matrix Analysis and Applications. ,vol. 34, pp. 1728- 1749 ,(2013) , 10.1137/130913651