Stepwise nearest neighbor discriminant analysis

作者: Xipeng Qiu , Lide Wu

DOI:

关键词: DiscriminantLinear discriminant analysisFeature extractionk-nearest neighbors algorithmClustering high-dimensional dataArtificial intelligenceMathematicsScatter matrixOptimal discriminant analysisPattern recognitionCovariance matrix

摘要: Linear Discriminant Analysis (LDA) is a popular feature extraction technique in statistical pattern recognition. However, it often suffers from the small sample size problem when dealing with high dimensional data. Moreover, while LDA guaranteed to find best directions each class has Gaussian density common covariance matrix, can fail if densities are more general. In this paper, new nonparametric method, stepwise nearest neighbor discriminant analysis(SNNDA), proposed point of view classification. SNNDA finds important without assuming belong any particular parametric family. It does not depend on nonsingularity within-class scatter matrix either. Our experimental results demonstrate that outperforms existing variant methods and other state-of-art face recognition approaches three datasets ATT FERET databases.

参考文章(17)
Robert Tibshirani, Trevor Hastie, Jerome H. Friedman, The Elements of Statistical Learning ,(2001)
Keinosuke Fukunaga, Introduction to statistical pattern recognition (2nd ed.) Academic Press Professional, Inc.. ,(1990)
Jian Yang, Jing-yu Yang, Why can LDA be performed in PCA transformed space Pattern Recognition. ,vol. 36, pp. 563- 566 ,(2003) , 10.1016/S0031-3203(02)00048-1
P.Jonathon Phillips, Harry Wechsler, Jeffery Huang, Patrick J. Rauss, The FERET database and evaluation procedure for face-recognition algorithms Image and Vision Computing. ,vol. 16, pp. 295- 306 ,(1998) , 10.1016/S0262-8856(97)00070-X
Ke Liu, Yong-Qing Cheng, Jing-Yu Yang, A generalized optimal set of discriminant vectors Pattern Recognition. ,vol. 25, pp. 731- 739 ,(1992) , 10.1016/0031-3203(92)90136-7
M. Bressan, J. Vitrià, Nonparametric discriminant analysis and nearest neighbor classification Pattern Recognition Letters. ,vol. 24, pp. 2743- 2749 ,(2003) , 10.1016/S0167-8655(03)00117-X
Baback Moghaddam, Tony Jebara, Alex Pentland, Bayesian face recognition Pattern Recognition. ,vol. 33, pp. 1771- 1782 ,(2000) , 10.1016/S0031-3203(99)00179-X
K. Fukunaga, J. M. Mantock, Nonparametric Discriminant Analysis IEEE Transactions on Pattern Analysis and Machine Intelligence. ,vol. PAMI-5, pp. 671- 678 ,(1983) , 10.1109/TPAMI.1983.4767461
Li-Fen Chen, Hong-Yuan Mark Liao, Ming-Tat Ko, Ja-Chen Lin, Gwo-Jong Yu, A new LDA-based face recognition system which can solve the small sample size problem Pattern Recognition. ,vol. 33, pp. 1713- 1726 ,(2000) , 10.1016/S0031-3203(99)00139-9