Constructing transitive permutation groups

作者: Alexander Hulpke

DOI: 10.1016/J.JSC.2004.08.002

关键词: Discrete mathematicsZ-groupTransitive relationMathematicsSymmetric groupCombinatoricsConjugacy classFrobenius groupPrimitive permutation groupCyclic permutationPermutation group

摘要: This paper presents a new algorithm to classify all transitive subgroups of the symmetric group up conjugacy. It has been used determine groups degree 30.

参考文章(42)
Alexander Hulpke, Bettina Eick, Computing the maximal subgroups of a permutation group I ,(2001)
Hans Zassenhaus, The theory of groups ,(1949)
CHARLES C. SIMS, Computational methods in the study of permutation groups Computational Problems in Abstract Algebra#R##N#Proceedings of a Conference Held at Oxford Under the Auspices of the Science Research Council Atlas Computer Laboratory, 29th August to 2nd September 1967. pp. 169- 183 ,(1970) , 10.1016/B978-0-08-012975-4.50020-5
L. Babai, A.J. Goodman, W.M. Kantor, E.M. Luks, P.P. Pálfy, Short Presentations for Finite Groups Journal of Algebra. ,vol. 194, pp. 79- 112 ,(1992) , 10.1006/JABR.1996.6980
WIEB BOSMA, JOHN CANNON, CATHERINE PLAYOUST, The MAGMA algebra system I: the user language Journal of Symbolic Computation. ,vol. 24, pp. 235- 265 ,(1997) , 10.1006/JSCO.1996.0125
Gordon F. Royle, The transitive groups of degree twelve Journal of Symbolic Computation. ,vol. 4, pp. 255- 268 ,(1987) , 10.1016/S0747-7171(87)80068-8
Gregory Butler, John Mckay, The transitive groups of degree up to eleven Communications in Algebra. ,vol. 11, pp. 863- 911 ,(1983) , 10.1080/00927878308822884
Martin Schönert, Ákos Seress, Finding blocks of imprimitivity in small-base groups in nearly linear time international symposium on symbolic and algebraic computation. pp. 154- 157 ,(1994) , 10.1145/190347.190400