Upper Bounds for MaxSat: Further Improved

作者: Nikhil Bansal , Venkatesh Raman

DOI: 10.1007/3-540-46632-0_26

关键词: Conjunctive normal formSatisfiabilityMathematicsBoolean satisfiability problemVertex coverAlgorithm complexityParameterized complexityMaximum satisfiability problemIntegerCombinatorics

摘要: Given a boolean CNF formula F of length |F| (sum the number variables in each clause) with m clauses on n variables, we prove following results. --The MAXSAT problem, which asks for an assignment satisfying maximum F, can be solved O(1:341294m|F|) time. --The parameterized version that is determining whether there exists at least k (for some integer k), O(k21:380278k + |F|) time. --MAXSAT O(1:105729|F||F|) time. These bounds improve recent respectively O(1:3972m|F|), O(k21:3995k and O(1:1279|F||F|) due to Niedermeier Rossmanith [11] these problems. Our last bound comes quite close O(1:07578|F||F|) Hirsch[6] Satisfiability problem (not MAXSAT).

参考文章(18)
Evgeny Dantsin, Boris Konev, Edward A. Hirsch, Michael Gavrilovich, APPROXIMATION ALGORITHMS FOR MAX SAT: A BETTER PERFORMANCE RATIO AT THE COST OF A LONGER RUNNING TIME ,(1998)
David Eppstein, Richard Beigel, 3-Coloring in time O(1.3446n): a no-MIS algorithm ,(2000)
Meena Mahajan, Venkatesh Raman, Parametrizing Above Guaranteed Values: MaxSat and MaxCut Electronic Colloquium on Computational Complexity. ,vol. 4, ,(1997)
Ingo Schiermeyer, Solving 3-satisfiability in less than 1, 579n steps Computer Science Logic. pp. 379- 394 ,(1993) , 10.1007/3-540-56992-8_22
Pavel Pudlák, Satisfiability - Algorithms and Logic mathematical foundations of computer science. pp. 129- 141 ,(1998) , 10.1007/BFB0055762
Rolf Niedermeier, Peter Rossmanith, New Upper Bounds for MaxSat international colloquium on automata languages and programming. pp. 575- 584 ,(1999) , 10.1007/3-540-48523-6_54
R. Balasubramanian, Michael R. Fellows, Venkatesh Raman, An improved fixed-parameter algorithm for vertex cover Information Processing Letters. ,vol. 65, pp. 163- 168 ,(1998) , 10.1016/S0020-0190(97)00213-5
Edward A. Hirsch, Two new upper bounds for SAT symposium on discrete algorithms. pp. 521- 530 ,(1998) , 10.5555/314613.314838
Meena Mahajan, Venkatesh Raman, Parameterizing above Guaranteed Values Journal of Algorithms. ,vol. 31, pp. 335- 354 ,(1999) , 10.1006/JAGM.1998.0996
B. Monien, E. Speckenmeyer, Solving satisfiability in less than 2n steps Discrete Applied Mathematics. ,vol. 10, pp. 287- 295 ,(1985) , 10.1016/0166-218X(85)90050-2