Zeta functions of finite graphs and coverings, III

作者: A.A. Terras , H.M. Stark

DOI: 10.1016/J.AIM.2006.03.002

关键词: Topological graph theoryIhara zeta functionMathematicsLine graphSymmetric graphRiemann hypothesisVertex-transitive graphVoltage graphCombinatoricsArithmetic zeta function

摘要: Abstract A graph theoretical analog of Brauer–Siegel theory for zeta functions number fields is developed using the Artin L-functions Galois coverings graphs from parts I and II. In process, we discuss possible versions Riemann hypothesis Ihara function an irregular graph.

参考文章(26)
Toshikazu Sunada, Fundamental groups and Laplacians Geometry and Analysis on Manifolds. pp. 248- 277 ,(1988) , 10.1007/BFB0083059
Alexander Lubotzky, Cayley graphs: eigenvalues, expanders and random walks Surveys in combinatorics, 1995. pp. 155- 189 ,(1995) , 10.1017/CBO9780511662096.008
Toshikazu Sunada, L-functions in geometry and some applications Springer, Berlin, Heidelberg. pp. 266- 284 ,(1986) , 10.1007/BFB0075662
Roger A Horn, Topics in Matrix Analysis ,(2010)
Harold Davenport, Multiplicative number theory ,(1967)
Ki-ichiro Hashimoto, Zeta Functions of Finite Graphs and Representations of $p$-Adic Groups Automorphic Forms and Geometry of Arithmetic Varieties. pp. 211- 280 ,(1989) , 10.2969/ASPM/01510211
Michel Waldschmidt, Pierre Moussa, Jean-Marc Luck, Claude Itzykson, Pierre Cartier, Jean-Benoît Bost, Henri Cohen, Don Zagier, Robert Gergondey, Harold M Stark, Eric Reyssat, Frits Beukers, Gilles Christol, Marjorie Senechal, André Katz, Jean Bellissard, Predrag Cvitanović, Jean-Christophe Yoccoz, From Number Theory to Physics ,(1992)
KI-ICHIRO HASHIMOTO, ARTIN TYPE L-FUNCTIONS AND THE DENSITY THEOREM FOR PRIME CYCLES ON FINITE GRAPHS International Journal of Mathematics. ,vol. 03, pp. 809- 826 ,(1992) , 10.1142/S0129167X92000370