Existence and amplitude bounds for irrotational water waves in finite depth.

作者: Florian Kogelbauer

DOI: 10.1098/RSTA.2017.0094

关键词: FluxHydraulic headMathematicsWavenumberUpper and lower boundsConservative vector fieldBanach spaceMathematical analysisNonlinear systemAmplitude

摘要: We prove the existence of solutions to irrotational water-wave problem in finite depth and derive an explicit upper bound on amplitude nonlinear terms wavenumber, total hydraulic head, wave speed relative mass flux. Our approach relies upon a reformulation as one-dimensional pseudo-differential equation Newton–Kantorovich iteration for Banach spaces. This article is part theme issue ‘Nonlinear water waves’.

参考文章(12)
Adrian Constantin, Walter Strauss, Eugen Vărvărucă, Global bifurcation of steady gravity water waves with critical layers Acta Mathematica. ,vol. 217, pp. 195- 262 ,(2016) , 10.1007/S11511-017-0144-X
A. P. Robertson, L. V. Kantorovich, Gleb Pavlovich Akilov, D. E. Brown, Functional analysis in normed spaces ,(1952)
Boris Buffoni, John Toland, Analytic theory of global bifurcation ,(2003)
J.F Toland, Stokes waves in Hardy spaces and as distributions Journal de Mathématiques Pures et Appliquées. ,vol. 79, pp. 901- 917 ,(2000) , 10.1016/S0021-7824(00)00172-0
Adrian Constantin, Walter Strauss, Exact steady periodic water waves with vorticity Communications on Pure and Applied Mathematics. ,vol. 57, pp. 481- 527 ,(2004) , 10.1002/CPA.3046
P. I. Plotnikov, J. F. Toland, Nash-Moser Theory for Standing Water Waves Archive for Rational Mechanics and Analysis. ,vol. 159, pp. 1- 83 ,(2001) , 10.1007/PL00004246
B. Buffoni, E. N. Dancer, J. F. Toland, The Regularity and Local Bifurcation of¶Steady Periodic Water Waves Archive for Rational Mechanics and Analysis. ,vol. 152, pp. 207- 240 ,(2000) , 10.1007/S002050000086
Eugen Varvaruca, Adrian Constantin, Steady Periodic Water Waves with Constant Vorticity: Regularity and Local Bifurcation Archive for Rational Mechanics and Analysis. ,vol. 199, pp. 33- 67 ,(2011) , 10.1007/S00205-010-0314-X
L. Edward Fraenkel, A Constructive Existence Proof for the Extreme Stokes Wave Archive for Rational Mechanics and Analysis. ,vol. 183, pp. 187- 214 ,(2007) , 10.1007/S00205-006-0003-Y