Sliding HDCA: Single-Trial EEG Classification to Overcome and Quantify Temporal Variability

作者: Amar R. Marathe , Anthony J. Ries , Kaleb McDowell

DOI: 10.1109/TNSRE.2014.2304884

关键词: Machine learningBrain–computer interfaceComponent analysisArtificial intelligenceSingle trialElectroencephalographyNeurophysiologyPattern recognition (psychology)Computer scienceDiscriminantEeg classification

摘要: Patterns of neural data obtained from electroencephalography (EEG) can be classified by machine learning techniques to increase human-system performance. In controlled laboratory settings this classification approach works well; however, transitioning these approaches into more dynamic, unconstrained environments will present several significant challenges. One such challenge is an in temporal variability measured behavioral and responses, which often results suboptimal Previously, we reported a novel method designed account for the response order improve performance using sliding windows hierarchical discriminant component analysis (HDCA), demonstrated decrease error over 50% when compared standard HDCA (Marathe et al., 2013). Here, expand upon show that embedded within new signal transformation that, applied EEG signals, significantly improves signal-to-noise ratio thereby enables accurate single-trial analysis. The presented here have implications both brain-computer interaction technologies basic science research processes.

参考文章(41)
Jonathan R. Folstein, Cyma Van Petten, After the P3: Late executive processes in stimulus categorization Psychophysiology. ,vol. 48, pp. 825- 841 ,(2011) , 10.1111/J.1469-8986.2010.01146.X
Jon Touryan, Laurie Gibson, James H. Horne, Paul Weber, Real-Time Measurement of Face Recognition in Rapid Serial Visual Presentation Frontiers in Psychology. ,vol. 2, pp. 42- 42 ,(2011) , 10.3389/FPSYG.2011.00042
K Yu, K Shen, S Shao, W C Ng, X Li, Bilinear common spatial pattern for single-trial ERP-based rapid serial visual presentation triage Journal of Neural Engineering. ,vol. 9, pp. 046013- 046013 ,(2012) , 10.1088/1741-2560/9/4/046013
Ruijiang Li, Andreas Keil, Jose C. Principe, Single-trial P300 estimation with a spatiotemporal filtering method Journal of Neuroscience Methods. ,vol. 177, pp. 488- 496 ,(2009) , 10.1016/J.JNEUMETH.2008.10.035
Wouter D. Weeda, Raoul P. P. P. Grasman, Lourens J. Waldorp, Maria C. van de Laar, Maurits W. van der Molen, Hilde M. Huizenga, A fast and reliable method for simultaneous waveform, amplitude and latency estimation of single-trial EEG/MEG data. PLOS ONE. ,vol. 7, ,(2012) , 10.1371/JOURNAL.PONE.0038292
M Kutas, G McCarthy, E Donchin, Augmenting mental chronometry: the P300 as a measure of stimulus evaluation time Science. ,vol. 197, pp. 792- 795 ,(1977) , 10.1126/SCIENCE.887923
B. J. Lance, S. E. Kerick, A. J. Ries, K. S. Oie, K. McDowell, Brain–Computer Interface Technologies in the Coming Decades Proceedings of the IEEE. ,vol. 100, pp. 1585- 1599 ,(2012) , 10.1109/JPROC.2012.2184830
Costanza D’Avanzo, Sami Schiff, Piero Amodio, Giovanni Sparacino, A Bayesian method to estimate single-trial event-related potentials with application to the study of the P300 variability Journal of Neuroscience Methods. ,vol. 198, pp. 114- 124 ,(2011) , 10.1016/J.JNEUMETH.2011.03.010
Piotr Jaskowski, Rolf Verleger, An evaluation of methods for single-trial estimation of P3 latency. Psychophysiology. ,vol. 37, pp. 153- 162 ,(2000) , 10.1111/1469-8986.3720153