Expected Total Cost Minimum Design of Plane Frames

作者: Kurt Marti

DOI: 10.1007/978-3-662-46214-0_6

关键词: Joint probability distributionApplied mathematicsRandom variableYield (engineering)Plane (geometry)Moment (mathematics)Mathematical optimizationStress (mechanics)Rotation (mathematics)MathematicsOptimal design

摘要: Yield stresses, allowable moment capacities (plastic moments with respect to compression, tension and rotation), applied loadings, cost factors, manufacturing errors, etc., are not given fixed quantities in structural analysis optimal design problems, but must be modeled as random variables a certain joint probability distribution. Problems from plastic based on the convex yield (feasibility) criterion linear equilibrium equation for stress (state) vector.

参考文章(143)
A. Prékopa, T. Szántai, Flood control reservoir system design using stochastic programming Mathematical Programming in Use. pp. 138- 151 ,(1978) , 10.1007/BFB0120831
Ulrich Rembold, Autonome mobile Roboter. Robotersysteme. ,vol. 4, pp. 17- 26 ,(1988)
K. Marti, S. Qu, Path Planning for Robots by Stochastic Optimization Methods Journal of Intelligent and Robotic Systems. ,vol. 22, pp. 117- 127 ,(1998) , 10.1023/A:1007976516339
Dan M. Frangopol, Reliability-Based Optimum Structural Design Springer, Boston, MA. pp. 352- 387 ,(1995) , 10.1007/978-1-4615-1771-9_16
T. T. Soong, Active Control Development in the U.S. and Case Studies Passive and Active Structural Vibration Control in Civil Engineering. pp. 345- 354 ,(1994) , 10.1007/978-3-7091-3012-4_16
William E. Biles, James J. Swain, Mathematical programming and the optimization of computer simulations Mathematical Programming Studies. pp. 189- 207 ,(1979) , 10.1007/BFB0120864
Rolf Findeisen, Tobias Raff, Frank Allgöwer, Sampled-Data Nonlinear Model Predictive Control for Constrained Continuous Time Systems Lecture Notes in Control and Information Sciences. pp. 207- 235 ,(2007) , 10.1007/978-3-540-37010-9_7
Alexander Von Ostrowski, Über Eigenwerte von Produkten Hermitescher Matrizen Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg. ,vol. 23, pp. 60- 68 ,(1959) , 10.1007/BF02941026