作者: Kurt Marti
DOI: 10.1007/978-3-662-46214-0_6
关键词: Joint probability distribution 、 Applied mathematics 、 Random variable 、 Yield (engineering) 、 Plane (geometry) 、 Moment (mathematics) 、 Mathematical optimization 、 Stress (mechanics) 、 Rotation (mathematics) 、 Mathematics 、 Optimal design
摘要: Yield stresses, allowable moment capacities (plastic moments with respect to compression, tension and rotation), applied loadings, cost factors, manufacturing errors, etc., are not given fixed quantities in structural analysis optimal design problems, but must be modeled as random variables a certain joint probability distribution. Problems from plastic based on the convex yield (feasibility) criterion linear equilibrium equation for stress (state) vector.