Baxter equations and Deformation of Abelian Differentials

作者: F. A. Smirnov

DOI: 10.1142/S0217751X04020543

关键词: Classical limitRiemann hypothesisIntegrable systemPure mathematicsQuantum mechanicsBilinear interpolationAbelian groupQuantumConnection (mathematics)Duality (optimization)Mathematics

摘要: In this paper the proofs are given of important properties deformed Abelian differentials introduced earlier in connection with quantum integrable systems. The starting point construction is Baxter equation. particular, we prove Riemann bilinear relation. Duality plays role our consideration. Classical limit considered details.

参考文章(7)
F. A. Smirnov, A. Nakayashiki, Cohomologies of Affine Jacobi Varieties and Integrable Systems arXiv: Mathematical Physics. ,(2000) , 10.1007/S002200100382
B. Ponsot, J. Teschner, Clebsch–Gordan and Racah–Wigner Coefficients for a Continuous Series of Representations of ?q (??(2, ℝ)) Communications in Mathematical Physics. ,vol. 224, pp. 613- 655 ,(2001) , 10.1007/PL00005590
Evgueni K. Sklyanin, Separation of Variables : New Trends Progress of Theoretical Physics Supplement. ,vol. 118, pp. 35- 60 ,(1995) , 10.1143/PTPS.118.35
Al Zamolodchikov, On the thermodynamic Bethe ansatz equation in the sinh-Gordon model Journal of Physics A. ,vol. 39, pp. 12863- 12887 ,(2006) , 10.1088/0305-4470/39/41/S09
A. Nakayashiki, F. A. Smirnov, Cohomologies of Affine Hyperelliptic Jacobi Varieties and Integrable Systems Communications in Mathematical Physics. ,vol. 217, pp. 623- 652 ,(2001) , 10.1007/S002200100382