作者: Matthias Engelmann , Jacob Schach Møller , Morten Grud Rasmussen
DOI: 10.5802/AIF.3177
关键词: Real line 、 Deformation (mechanics) 、 Complex plane 、 Eigenvalues and eigenvectors 、 Operator (physics) 、 Mathematics 、 Mathematical analysis 、 Perturbation theory 、 Essential spectrum
摘要: ————————————————————————————————————— Abstract We develop an analytic perturbation theory for eigenvalues with finite multiplicities, embedded into the essential spectrum of a self-adjoint operator H. assume existence another A which family Hθ = e iθAHe−iθA extends analytically from real line to strip in complex plane. Assuming Mourre estimate holds i[H,A] vicinity eigenvalue, we prove that is locally deformed away leaving it isolated and thus permitting application Kato’s theory.