Zero-order TSK-type fuzzy system learning using a two-phase swarm intelligence algorithm

作者: Chia-Feng Juang , Chiang Lo

DOI: 10.1016/J.FSS.2008.02.003

关键词: Cluster analysisFuzzy setSwarm intelligenceNeuro-fuzzyArtificial neural networkParticle swarm optimizationMathematicsAnt colony optimization algorithmsAlgorithmFuzzy control system

摘要: This paper proposes zero-order Takagi-Sugeno-Kang (TSK)-type fuzzy system learning using a two-phase swarm intelligence algorithm (TPSIA). The first phase of TPSIA learns structure and parameters by on-line clustering-aided ant colony optimization (ACO). Phase two aims to further optimize all the free in particle (PSO). In ACO (CACO), is learned through clustering. Once new rule generated clustering, consequent selected from discrete set candidate values ACO. ACO, path an regarded as combination every rule. CACO helps locate good initial systems for subsequent learning. two, particles PSO are randomly according best solution found CACO. All designed optimally tuned PSO. Simulations on control three nonlinear plants conducted verify performance. Comparisons with other algorithms demonstrate

参考文章(40)
K. E. Parsopoulos, M. N. Vrahatis, Modification of the Particle Swarm Optimizer for Locating All the Global Minima Springer, Vienna. pp. 324- 327 ,(2001) , 10.1007/978-3-7091-6230-9_80
Evolutionary Computation 1 IOP Publishing Ltd. ,(2000) , 10.1887/0750306645
Oscar Cordón, Iñaki Fernández de Viana, Francisco Herrera, Jorge Casillas, Learning cooperative linguistic fuzzy rules using the best–worst ant system algorithm: Research Articles International Journal of Intelligent Systems. ,vol. 20, pp. 433- 452 ,(2005) , 10.1002/INT.V20:4
M. Birattari, T. Stutzle, M. Dorigo, Ant Colony Optimization ,(2004)
Chin-Teng Lin, C. S. George Lee, Neural fuzzy systems: a neuro-fuzzy synergism to intelligent systems Prentice-Hall, Inc.. ,(1996)
Thomas Stützle, Holger H. Hoos, – Ant System Future Generation Computer Systems. ,vol. 16, pp. 889- 914 ,(2000) , 10.1016/S0167-739X(00)00043-1