Spatial Statistics and Bayesian Computation

作者: Julian Besag , Peter J. Green

DOI: 10.1111/J.2517-6161.1993.TB01467.X

关键词: Gibbs samplingHyperparameterMathematicsBayesian probabilityMarkov random fieldBayesian inferenceArtificial intelligenceEconometricsMachine learningVariable-order Bayesian networkBayesian statisticsMarkov chain Monte Carlo

摘要: … Here, we briefly describe a spatial application of MCMC methods to the Bayesian analysis of agricultural field experiments. We do not discuss individual analyses but summarize our …

参考文章(49)
Charles J. Geyer, Elizabeth A. Thompson, Constrained Monte Carlo Maximum Likelihood for Dependent Data Journal of the royal statistical society series b-methodological. ,vol. 54, pp. 657- 683 ,(1992) , 10.1111/J.2517-6161.1992.TB01443.X
K. V. Mardia, J. T. Kent, Statistical Shape Models in Image Analysis ,(1992)
Ulf Grenander, Michael I. Miller, Representations of Knowledge in Complex Systems Journal of the Royal Statistical Society: Series B (Methodological). ,vol. 56, pp. 549- 581 ,(1994) , 10.1111/J.2517-6161.1994.TB02000.X
Charles J. Geyer, Markov Chain Monte Carlo Maximum Likelihood Interface Foundation of North America. ,(1991)
U. Grenander, Y. Chow, D. M. Keenan, Hands: A Pattern Theoretic Study of Biological Shapes ,(1990)
Peter Green, Christopher Jennison, Allan Seheult, Analysis of Field Experiments by Least Squares Smoothing Journal of the royal statistical society series b-methodological. ,vol. 47, pp. 299- 315 ,(1985) , 10.1111/J.2517-6161.1985.TB01358.X
D. Geman, Random fields and inverse problems in imaging Springer, Berlin, Heidelberg. pp. 115- 193 ,(1990) , 10.1007/BFB0103042
Ulli Wolff, Collective Monte Carlo updating for spin systems. Physical Review Letters. ,vol. 62, pp. 361- 364 ,(1989) , 10.1103/PHYSREVLETT.62.361