Knot line refinement algorithms for tensor product B-spline surfaces

作者: T. Lyche , E. Cohen , K. Mørken

DOI: 10.1016/0167-8396(85)90016-0

关键词: Tensor productAlgorithmB-splineSubdivisionUnivariateLine (geometry)Subdivision algorithmsKnot (mathematics)Mathematics

摘要: Several refinement and subdivision algorithms for univariate B-spline curves are discussed in a tensor product setting. Efficiency considerations lead to different choice of the case than case.

参考文章(6)
T. Lyche, K. Mørken, Making the Oslo algorithm more efficient SIAM Journal on Numerical Analysis. ,vol. 23, pp. 663- 675 ,(1986) , 10.1137/0723042
Rong-Qing Jia, Total positivity of the discrete spline collocation matrix Journal of Approximation Theory. ,vol. 39, pp. 11- 23 ,(1983) , 10.1016/0021-9045(83)90065-5
Wolfgang Boehm, Inserting New Knots into B-spline Curves Computer-aided Design. ,vol. 12, pp. 199- 201 ,(1980) , 10.1016/0010-4485(80)90154-2
Elaine Cohen, Tom Lyche, Richard Riesenfeld, Discrete B-splines and subdivision techniques in computer-aided geometric design and computer graphics Computer Graphics and Image Processing. ,vol. 14, pp. 87- 111 ,(1980) , 10.1016/0146-664X(80)90040-4
Carl De Boor, Carl De Boor, A practical guide to splines ,(1978)