On kink states of ferromagnetic chains

作者: Ky-Thuan Bach , Nicolas Macris

DOI: 10.1016/S0378-4371(99)00532-4

关键词: Quantum fluctuationHeisenberg modelWeb of scienceCondensed matter physicsInterface (Java)PhysicsQuantum mechanicsFerromagnetism

摘要: Note: Special issue in honor of Joel Lebowitz Reference LTHC-ARTICLE-2007-025doi:10.1016/S0378-4371(99)00532-4View record Web Science Record created on 2007-02-16, modified 2017-05-12

参考文章(15)
Joel Louis Lebowitz, Cyril Domb, Melville S. Green, Phase Transitions and Critical Phenomena ,(1972)
Michael Aizenman, Translation invariance and instability of phase coexistence in the two dimensional Ising system. Communications in Mathematical Physics. ,vol. 73, pp. 83- 94 ,(1980) , 10.1007/BF01942696
Giovanni Gallavotti, The phase separation line in the two-dimensional Ising model Communications in Mathematical Physics. ,vol. 27, pp. 103- 136 ,(1972) , 10.1007/BF01645615
Jean Bricmont, Joel L. Lebowitz, Charles E. Pfister, Enzo Olivieri, Non-translation invariant Gibbs states with coexisting phases. I: Existence of sharp interface for Widom-Rowlinson type lattice models in three dimensions Communications in Mathematical Physics. ,vol. 66, pp. 1- 20 ,(1979) , 10.1007/BF01197743
C. Borgs, J. T. Chayes, J. Fröhlich, Dobrushin States in Quantum Lattice Systems Communications in Mathematical Physics. ,vol. 189, pp. 591- 619 ,(1997) , 10.1007/S002200050219
Tom Kennedy, Long range order in the anisotropic quantum ferromagnetic Heisenberg model Communications in Mathematical Physics. ,vol. 100, pp. 447- 462 ,(1985) , 10.1007/BF01206139
Jürg Fröhlich, Elliott H. Lieb, Phase transitions in anisotropic lattice spin systems Communications in Mathematical Physics. ,vol. 60, pp. 233- 267 ,(1978) , 10.1007/978-3-662-10018-9_11
J. Bricmont, J. L. Lebowitz, C. E. Pfister, On the local structure of the phase separation line in the two-dimensional Ising system Journal of Statistical Physics. ,vol. 26, pp. 313- 332 ,(1981) , 10.1007/BF01013174
Malte Henkel, A. Brooks Harris, Marek Cieplak, Domain walls in the quantum transverse Ising model. Physical Review B. ,vol. 52, pp. 4371- 4388 ,(1995) , 10.1103/PHYSREVB.52.4371