Non-linear, non-planar and non-periodic vibrations of a string

作者: O. O'Reilly , P.J. Holmes

DOI: 10.1016/0022-460X(92)90374-7

关键词: Integrable systemVibrationNormal modeClassical mechanicsForcing (recursion theory)Nonlinear systemC++ string handlingHamiltonian systemPlanarMathematics

摘要: Abstract We study the vibrations of a string subject to planar harmonic excitation, both experimentally and theoretically. observe multiple periodic motions, non-planar (whirling), as well quasi-periodic whirling irregularly precessing oscillations when forcing frequency is near that transverse normal mode. A two-degree-of-freedom model derived, it shown these motions can be partially understood in terms completely integrable Hamiltonian system obtained damping tend zero model.

参考文章(35)
Stephen Wiggins, Global Bifurcations and Chaos Applied Mathematical Sciences. ,(1988) , 10.1007/978-1-4612-1042-9
John T. Cannon, Sigalia Dostrovsky, The Evolution of Dynamics: Vibration Theory from 1687 to 1742 Studies in the History of Mathematics and Physical Sciences. ,vol. 6, ,(1981) , 10.1007/978-1-4613-9461-7
A. Mielke, P. Holmes, O. O'Reilly, Cascades of homoclinic orbits to, and chaos near, a Hamiltonian saddle-center Journal of Dynamics and Differential Equations. ,vol. 4, pp. 95- 126 ,(1992) , 10.1007/BF01048157
G. V. Anand, Negative resistance mode of forced oscillations of a string Journal of the Acoustical Society of America. ,vol. 54, pp. 692- 698 ,(1973) , 10.1121/1.1913650
T.C.A. Molteno, N.B. Tufillaro, Torus doubling and chaotic string vibrations: Experimental results Journal of Sound and Vibration. ,vol. 137, pp. 327- 330 ,(1990) , 10.1016/0022-460X(90)90796-3
Ray Redheffer, Jack K. Hale, Ordinary differential equations American Mathematical Monthly. ,vol. 78, pp. 1154- ,(1971) , 10.2307/2316346
Z.C. Feng, P.R. Sethna, Global bifurcation and chaos in parametrically forced systems with one-one resonance Dynamics and Stability of Systems. ,vol. 5, pp. 201- 225 ,(1990) , 10.1080/02681119008806098
A.K. Bajaj, J.M. Johnson, Asymptotic techniques and complex dynamics in weakly non-linear forced mechanical systems International Journal of Non-linear Mechanics. ,vol. 25, pp. 211- 226 ,(1990) , 10.1016/0020-7462(90)90052-B
P.J. Holmes, The dynamics of repeated impacts with a sinusoidally vibrating table Journal of Sound and Vibration. ,vol. 84, pp. 173- 189 ,(1982) , 10.1016/S0022-460X(82)80002-3