作者: Jean -Daniel Boissonnat , Olivier Devillers , Monique Teillaud
DOI: 10.1007/BF01228508
关键词: Combinatorics 、 Tree (descriptive set theory) 、 Centroidal Voronoi tessellation 、 Delaunay triangulation 、 Weighted Voronoi diagram 、 Dimension (graph theory) 、 Power diagram 、 Voronoi diagram 、 Asymptotically optimal algorithm 、 Mathematics 、 Discrete mathematics
摘要: Thek-Delaunay tree extends the Delaunay introduced in [1], and [2]. It is a hierarchical data structure that allows semidynamic construction of higher-order Voronoi diagrams finite set ofn points any dimension. In this paper we prove randomized thek-Delaunay tree, thus all order≤k diagrams, can be done inO(n logn+k 3n) expected time O(k2n) storage plane, which asymptotically optimal for fixedk. Our algorithm tod-dimensional space with complexityO(k ⌈(d+1)/2⌉+1 n ⌊(d+1)/2⌋) complexityO(k ⌈(d+1)/2⌉ n ⌊(d+1)/2⌋). The simple experimental results are given.