Twisted yangians and infinite-dimensional classical Lie algebras

作者: G. I. Olshanskii

DOI: 10.1007/BFB0101183

关键词: Universal enveloping algebraLie conformal algebraNon-associative algebraAffine Lie algebraAlgebraQuantum groupFundamental representationAdjoint representation of a Lie algebraMathematicsRepresentation theory

摘要: The Yangians are quantized enveloping algebras of polynomial current Lie and twisted should be their analogs for algebras. We define study certain examples describe relationship to a problem which arises in representation theory infinite-dimensional classical groups.

参考文章(10)
Semen Grigorʹevich Gindikin, V. P. Maslov, Vladimir Igorevich Arnolʹd, Advances in Soviet mathematics American Mathematical Society. ,(1990)
V. G. DRINFEL'D, Hopf algebras and the quantum Yang-Baxter equation Proceedings of the USSR Academy of Sciences. ,vol. 32, pp. 254- 258 ,(1985) , 10.1142/9789812798336_0013
A. N. Kirillov, N. Yu. Reshetikhin, The Yangians, Bethe Ansatz and combinatorics Letters in Mathematical Physics. ,vol. 12, pp. 199- 208 ,(1986) , 10.1007/BF00416510
V. G. Drinfel'd, Degenerate affine hecke algebras and Yangians Functional Analysis and Its Applications. ,vol. 20, pp. 58- 60 ,(1986) , 10.1007/BF01077318
I. V. Cherednik, Factorizing Particles on a Half Line and Root Systems Theoretical and Mathematical Physics. ,vol. 61, pp. 977- 983 ,(1984) , 10.1007/BF01038545
M. L. Nazarov, Quantum Berezinian and the classical capelli identity Letters in Mathematical Physics. ,vol. 21, pp. 123- 131 ,(1991) , 10.1007/BF00401646
N. Yu. Reshetikhin, M. A. Semenov-Tian-Shansky, Central extensions of quantum current groups Letters in Mathematical Physics. ,vol. 19, pp. 133- 142 ,(1990) , 10.1007/BF01045884
V. G. Kac, Laplace operators of infinite-dimensional Lie algebras and theta functions Proceedings of the National Academy of Sciences of the United States of America. ,vol. 81, pp. 645- 647 ,(1984) , 10.1073/PNAS.81.2.645
E K Sklyanin, Boundary conditions for integrable quantum systems Journal of Physics A. ,vol. 21, pp. 2375- 2389 ,(1988) , 10.1088/0305-4470/21/10/015