Numerical simulation of Kadomtsev-Petviashvili-Benjamin-Bona-Mahony equations using finite difference method

作者: Ayadi Mekki , Maâtoug Mohamed Ali

DOI: 10.1016/J.AMC.2013.04.039

关键词: hp-FEMMathematical analysisMathematicsFinite differenceFinite volume methodFinite difference methodPartial differential equationFinite difference coefficientNumerical partial differential equationsMixed finite element method

摘要: In this paper, the finite difference method is employed to solve Kadomtsev–Petviashvili–Benjamin–Bona–Mahony II (KP–BBM-II) partial differential equations. The time and space …

参考文章(28)
Q. Cao, K. Djidjeli, W. G. Price, E. H. Twizell, Computational methods for some non-linear wave equations Journal of Engineering Mathematics. ,vol. 35, pp. 323- 338 ,(1999) , 10.1023/A:1004464217776
Abdul-Majid Wazwaz, A computational approach to soliton solutions of the Kadomtsev-Petviashvili equation Applied Mathematics and Computation. ,vol. 123, pp. 205- 217 ,(2001) , 10.1016/S0096-3003(00)00065-5
Jerry L. Bona, Yue Liu, Michael M. Tom, The Cauchy Problem and Stability of Solitary-Wave Solutions for RLW–KP-Type Equations Journal of Differential Equations. ,vol. 185, pp. 437- 482 ,(2002) , 10.1006/JDEQ.2002.4171
Wen Chen, Linjuan Ye, Hongguang Sun, Fractional diffusion equations by the Kansa method Computers & Mathematics With Applications. ,vol. 59, pp. 1614- 1620 ,(2010) , 10.1016/J.CAMWA.2009.08.004
V. T., P. G. Ciarlet, Introduction a l'analyse numerique matricielle et a l'optimisation Mathematics of Computation. ,vol. 42, pp. 713- ,(1984) , 10.2307/2007612
Gideon P. Daspan, Michael M. Tom, Comparison of KP and BBM-KP Models International Journal of Mathematics and Mathematical Sciences. ,vol. 2007, pp. 1- 20 ,(2007) , 10.1155/2007/37274
Shengqiang Tang, Xiaoliang Huang, Wentao Huang, Bifurcations of travelling wave solutions for the generalized KP–BBM equation Applied Mathematics and Computation. ,vol. 216, pp. 2881- 2890 ,(2010) , 10.1016/J.AMC.2010.03.139
Carlos E. Kenig, On the local and global well-posedness theory for the KP-I equation Annales De L Institut Henri Poincare-analyse Non Lineaire. ,vol. 21, pp. 827- 838 ,(2004) , 10.1016/J.ANIHPC.2003.12.002
Dongjin Kim, Wlodek Proskurowski, An efficient approach for solving a class of nonlinear 2D parabolic PDEs International Journal of Mathematics and Mathematical Sciences. ,vol. 2004, pp. 881- 899 ,(2004) , 10.1155/S0161171204211218