Role of four-membered rings in C32 fullerene stability and mechanisms of generalized Stone-Wales transformation: a density functional theory investigation

作者: Xiang Zhao , Weiwei Wang , Jingshuang Dang

DOI: 10.1039/C0CP02964E

关键词: FullereneComputational chemistryCrystallographyReaction mechanismTransition stateDensity functional theoryChemistryConcerted reactionStepwise reactionIsomerizationRing (chemistry)

摘要: Density functional theory (DFT) methods have been applied to study C32 fullerenes built from four-, five-, and six-membered rings. The relative energies of pure evaluated locate three most stable structures, 32:D4d with two squares, 1:D3 without square 5:Cs one square. Structural analysis reveals that there is a rearrangement pathway between the lowest energy classical isomer non-classical 32:D4d, behaves just as an intermediate them. kinetic processes generalized Stone-Wales transformation (GSWT) four-membered rings explored distinct reaction mechanisms are determined by all transition states intrinsic coordinates PBE1PBE/6-31G(d) approach for first time. One mechanism concerted rotating dimer closed cage surface another stepwise carbene-like sp3 structure, whereas latter sorted into paths based on ring vanishing before or after formation structure. It indicated no absolute preference any mechanism, which depends adaptability different reactants diverse mechanisms. Furthermore, it's found interconversion process participation squares more reactive than C60_Ih C60_C2v, implying some potential importance small in fullerene isomerization.

参考文章(53)
H. W. Kroto, J. R. Heath, S. C. O’Brien, R. F. Curl, R. E. Smalley, C 60 : Buckminsterfullerene Nature. ,vol. 318, pp. 162- 163 ,(1985) , 10.1038/318162A0
Mavinahalli N Jagadeesh, Jayaraman Chandrasekhar, Computational studies on C36 and its dimer Chemical Physics Letters. ,vol. 305, pp. 298- 302 ,(1999) , 10.1016/S0009-2614(99)00387-5
Horst Prinzbach, Andreas Weiler, Peter Landenberger, Fabian Wahl, Jürgen Wörth, Lawrence T. Scott, Marc Gelmont, Daniela Olevano, Bernd v. Issendorff, Gas-phase production and photoelectron spectroscopy of the smallest fullerene, C20 Nature. ,vol. 407, pp. 60- 63 ,(2000) , 10.1038/35024037
C. Piskoti, J. Yarger, A. Zettl, C36, A new carbon solid Nature. ,vol. 393, pp. 771- 774 ,(1998) , 10.1038/31668
G. K. Gueorguiev, J. M. Pacheco, Structural and electronic properties of C36 The Journal of Chemical Physics. ,vol. 114, pp. 6068- 6071 ,(2001) , 10.1063/1.1355985
Zdeněk Slanina, Filip Uhlı́k, Xiang Zhao, Eiji Ōsawa, Enthalpy–entropy interplay for C36 cages: B3LYP/6-31G* calculations Journal of Chemical Physics. ,vol. 113, pp. 4933- 4937 ,(2000) , 10.1063/1.1288368
M. T. Bowers, P. R. Kemper, G. von Helden, P. A. M. van Koppen, Gas-Phase Ion Chromatography: Transition Metal State Selection and Carbon Cluster Formation Science. ,vol. 260, pp. 1446- 1451 ,(1993) , 10.1126/SCIENCE.260.5113.1446
R. Krishnan, J. S. Binkley, R. Seeger, J. A. Pople, Self‐consistent molecular orbital methods. XX. A basis set for correlated wave functions Journal of Chemical Physics. ,vol. 72, pp. 650- 654 ,(1980) , 10.1063/1.438955
Patrick W. Fowler, Dean Mitchell, Francesco Zerbetto, C36 : THE BEST FULLERENE FOR COVALENT BONDING Journal of the American Chemical Society. ,vol. 121, pp. 3218- 3219 ,(1999) , 10.1021/JA983853O