作者: Wenbin Zou , Kidiyo Kpalma , Joseph Ronsin
DOI: 10.1109/ICIP.2012.6467425
关键词: Segmentation-based object categorization 、 Object detection 、 Scale-space segmentation 、 Image segmentation 、 Pattern recognition 、 Segmentation 、 Artificial intelligence 、 Computer science 、 Computer vision 、 Quantization (signal processing) 、 Range segmentation 、 Neural coding 、 Minimum spanning tree-based segmentation
摘要: The purpose of this paper is segmenting objects in an image and assigning a predefined semantic label to each object. There are two contributions paper. On one hand, segmentation guided by hierarchical regions instead single-level or multi-scale generated multiple segmentations. the other sparse coding introduced as high level description regions, which contributes reduction quantization error compared traditional bag-of-visual-words method. Experiments on challenging Microsoft Research Cambridge dataset (MSRC 21) show that our algorithm achieves state-of-the-art performance.