Effect of heat treatment on phase structure and thermal conductivity of a copper-infiltrated steel

作者: S. Klein , S. Weber , W. Theisen

DOI: 10.1007/S10853-015-8919-Y

关键词: Electrical resistivity and conductivityComposite materialAlloyMaterials scienceCopperConductivityVolume fractionTool steelThermal conductivityComposite number

摘要: Infiltration of tool steels with copper is a suitable and cheap method to create dense parts using powder metallurgy. In this work, it shown that the network forms inside steel skeleton during infiltration enhances thermal conductivity resulting composite. The level enhancement dependent on phase volume fraction copper. Multiple heat treatments composite revealed strong dependency between solution state Fe in network. latter highly heat-treated condition multi-phase material. Using infiltration, electrical was increased from \(21.3\hbox { }50.1\,\hbox {Wm}^{-1}\, \hbox {K}^{-1}\) \(2.5\,\hbox }7.7\,{\upmu \Omega }^{-1}\, {m}^{-1},\) respectively, for aged steel-copper comparison original X245VCrMo9-4-4 steel. addition, model alloy represents copper-phase manufactured. By measuring both, bulk steel, comparing data composite, different models calculating overall are discussed.

参考文章(26)
N. Rodríguez, B. Casas, U. Paar, I. Valls, Benefits from using high thermal conductivity tool steels in the hot forming of steels La Metallurgia Italiana. ,(2010)
D.P.H. Hasselman, Lloyd F. Johnson, Effective Thermal Conductivity of Composites with Interfacial Thermal Barrier Resistance Journal of Composite Materials. ,vol. 21, pp. 508- 515 ,(1987) , 10.1177/002199838702100602
J Reekie, T S Hutchison, F E Hetherington, Precipitation Processes in Copper-Iron Alloys Proceedings of the Physical Society. Section B. ,vol. 66, pp. 1101- 1112 ,(1953) , 10.1088/0370-1301/66/12/312
Daniel B. Butrymowicz, John R. Manning, Michael E. Read, Diffusion in Copper and Copper Alloys. Part I. Volume and Surface Self‐Diffusion in Copper Journal of Physical and Chemical Reference Data. ,vol. 2, pp. 643- 656 ,(1973) , 10.1063/1.3253129
A. L. Geiger, D. P. H. Hasselman, K. Y. Donaldson, Effect of reinforcement particle size on the thermal conductivity of a particulate silicon carbide-reinforced aluminium-matrix composite Journal of Materials Science Letters. ,vol. 12, pp. 420- 423 ,(1993) , 10.1007/BF00609172
Hemanshu Bhatt, Kimberly Y. Donaldson, D.P.H. Hasselman, R. T. Bhatt, Role of the Interfacial Thermal Barrier in the Effective Thermal Diffusivity/Conductivity of SiC-Fiber-Reinforced Reaction-Bonded Silicon Nitride Journal of the American Ceramic Society. ,vol. 73, pp. 312- 316 ,(1990) , 10.1111/J.1151-2916.1990.TB06511.X
Daniel B. Butrymowicz, John R. Manning, Michael E. Read, Diffusion in copper and copper alloys part IV. Diffusion in systems involving elements of group VIII Journal of Physical and Chemical Reference Data. ,vol. 5, pp. 103- 200 ,(1976) , 10.1063/1.555528
Hongtao Zhang, Yu Zeng, Hongyan Zhang, Fangfang Guo, Computational Investigation of the Effective Thermal Conductivity of Interpenetrating Network Composites Journal of Composite Materials. ,vol. 44, pp. 1247- 1260 ,(2010) , 10.1177/0021998309351606