Dynamics and synchronization of new hyperchaotic complex Lorenz system

作者: Emad E. Mahmoud

DOI: 10.1016/J.MCM.2011.11.053

关键词: Complex systemChaoticLyapunov functionControl theoryLorenz systemSynchronizationAttractorLyapunov exponentMathematicsLyapunov stability

摘要: Abstract The aim of this paper is to introduce a new hyperchaotic complex Lorenz system. This system constructed by adding linear controller the second equation chaotic 7-dimensional continuous real autonomous has attractors and quasi-periodic solutions with three zero Lyapunov exponents, while exist for all parameters values two exponents. fractional dimension calculated. Bifurcation diagrams are used demonstrate behaviors active control method based on stability analysis study synchronization Numerical simulations implemented verify results these investigations.

参考文章(30)
GAMAL M. MAHMOUD, M. A. Al-KASHIF, SHABAN A. ALY, BASIC PROPERTIES AND CHAOTIC SYNCHRONIZATION OF COMPLEX LORENZ SYSTEM International Journal of Modern Physics C. ,vol. 18, pp. 253- 265 ,(2007) , 10.1142/S0129183107010425
Gamal M. Mahmoud, Shaban A. Aly, M. A. AL-Kashif, Dynamical properties and chaos synchronization of a new chaotic complex nonlinear system Nonlinear Dynamics. ,vol. 51, pp. 171- 181 ,(2007) , 10.1007/S11071-007-9200-Y
Ming-Chung Ho, Yao-Chen Hung, Chien-Ho Chou, Phase and anti-phase synchronization of two chaotic systems by using active control Physics Letters A. ,vol. 296, pp. 43- 48 ,(2002) , 10.1016/S0375-9601(02)00074-9
Gamal M Mahmoud, M A Al-Kashif, A A Farghaly, Chaotic and hyperchaotic attractors of a complex nonlinear system Journal of Physics A. ,vol. 41, pp. 055104- ,(2008) , 10.1088/1751-8113/41/5/055104
Paul Frederickson, James L Kaplan, Ellen D Yorke, James A Yorke, The liapunov dimension of strange attractors Journal of Differential Equations. ,vol. 49, pp. 185- 207 ,(1983) , 10.1016/0022-0396(83)90011-6
Aimin Chen, Junan Lu, Jinhu Lü, Simin Yu, Generating hyperchaotic Lü attractor via state feedback control Physica A-statistical Mechanics and Its Applications. ,vol. 364, pp. 103- 110 ,(2006) , 10.1016/J.PHYSA.2005.09.039
Qigui Yang, Kangming Zhang, Guanrong Chen, Hyperchaotic attractors from a linearly controlled Lorenz system Nonlinear Analysis: Real World Applications. ,vol. 10, pp. 1601- 1617 ,(2009) , 10.1016/J.NONRWA.2008.02.008
Cun-zheng Ning, Hermann Haken, Detuned lasers and the complex Lorenz equations: Subcritical and supercritical Hopf bifurcations Physical Review A. ,vol. 41, pp. 3826- 3837 ,(1990) , 10.1103/PHYSREVA.41.3826
O.E. Rossler, An equation for hyperchaos Physics Letters A. ,vol. 71, pp. 155- 157 ,(1979) , 10.1016/0375-9601(79)90150-6
A. Rauh, L. Hannibal, N.B. Abraham, Global stability properties of the complex Lorenz model Physica D: Nonlinear Phenomena. ,vol. 99, pp. 45- 58 ,(1996) , 10.1016/S0167-2789(96)00129-7