Solid-state quantum memory using the 31P nuclear spin

作者: John J. L. Morton , Alexei M. Tyryshkin , Richard M. Brown , Shyam Shankar , Brendon W. Lovett

DOI: 10.1038/NATURE07295

关键词: NanotechnologyQuantum mechanicsQuantum capacityQuantum informationQuantum error correctionQubitOne-way quantum computerPhysicsOpen quantum systemQuantum networkQuantum channelMultidisciplinary

摘要: The transfer of information between the entities that do processing and memory is crucial — problematic for quantum computation. In classical systems can include a copying step, where errors be spotted corrected, but in fundamentally precluded. Morton et al. demonstrate technology could solve problem: coherent storage readout electron-spin elements based on nuclear spin. system utilizes phosphorus-31 spin donors silicon-28 crystal. acts as element faithfully store full state electron more than second, then it back to with about 90% efficiency. computation; challenging because process must remain at all times preserve nature information. This paper demonstrates different physical forms—for example memory—is central theme communication computation1, great effort2 taken protect integrity fragile bit (qubit). However, particularly challenging, information3. Here we superposition an ‘processing’ qubit nuclear-spin ‘memory’ qubit, using combination microwave radio-frequency pulses applied 31P isotopically pure 28Si crystal4,5. left timescale long compared decoherence time, coherently transferred spin, thus demonstrating solid-state memory. overall store–readout fidelity 90 per cent, loss attributed imperfect rotations, improved through use composite pulses6. coherence lifetime 5.5 K exceeds 1 s.

参考文章(32)
B. E. Kane, A silicon-based nuclear spin quantum computer Nature. ,vol. 393, pp. 133- 137 ,(1998) , 10.1038/30156
K. C. Nowack, F. H. L. Koppens, Yu. V. Nazarov, L. M. K. Vandersypen, Coherent Control of a Single Electron Spin with Electric Fields Science. ,vol. 318, pp. 1430- 1433 ,(2007) , 10.1126/SCIENCE.1148092
M. J. Hirsch, D. F. Holcomb, NMR Study of Si:As and Si:P near the metal-insulator transition. Physical Review B. ,vol. 33, pp. 2520- 2529 ,(1986) , 10.1103/PHYSREVB.33.2520
Lorenza Viola, Seth Lloyd, Dynamical suppression of decoherence in two-state quantum systems Physical Review A. ,vol. 58, pp. 2733- 2744 ,(1998) , 10.1103/PHYSREVA.58.2733
V. V. Dobrovitski, J. M. Taylor, M. D. Lukin, Long-lived memory for electronic spin in a quantum dot: Numerical analysis Physical Review B. ,vol. 73, pp. 245318- ,(2006) , 10.1103/PHYSREVB.73.245318
T. Schenkel, Stephen Aplin Lyon, C. C. Lo, J. Bokor, A. M. Tyryshkin, Spin-dependent scattering off neutral antimony donors in Si28 field-effect transistors Applied Physics Letters. ,vol. 91, pp. 242106- ,(2007) , 10.1063/1.2817966
John J. L. Morton, Alexei M. Tyryshkin, Arzhang Ardavan, Kyriakos Porfyrakis, S. A. Lyon, G. Andrew D. Briggs, Measuring errors in single qubit rotations by pulsed electron paramagnetic resonance Physical Review A. ,vol. 71, pp. 012332- ,(2005) , 10.1103/PHYSREVA.71.012332
M. Mehring, J. Mende, W. Scherer, Entanglement between an electron and a nuclear spin 1/2. Physical Review Letters. ,vol. 90, pp. 153001- ,(2003) , 10.1103/PHYSREVLETT.90.153001
Andrew M. Steane, Efficient fault-tolerant quantum computing Nature. ,vol. 399, pp. 124- 126 ,(1999) , 10.1038/20127
A. M. Tyryshkin, S. A. Lyon, A. V. Astashkin, A. M. Raitsimring, Electron spin relaxation times of phosphorus donors in silicon Physical Review B. ,vol. 68, pp. 193207- ,(2003) , 10.1103/PHYSREVB.68.193207