Survey: Probabilistic Methodology and Techniques for Artefact Conception and Development

作者: G Roup , Laplace R Esearch

DOI:

关键词: Probabilistic logicBayesian networkMachine learningDeliverableBayesian programmingInferenceSensor fusionArtificial intelligenceKalman filterComputer scienceBayesian probability

摘要: The purpose of this paper is to make a state the art on probabilistic methodology and techniques for artefact conception development. It 8th deliverable BIBA (Bayesian Inspired Brain Artefact) project. We first present incompletness problem as central difficulty that both living creatures artefacts have face: how can they perceive, infer, decide act efficiently with incomplete uncertain knowledge?. then introduce generic formalism called Bayesian Programming . This used review main techniques. organized in 3 parts: models from networks Kalman filters sensor fusion CAD systems, second inference finally learning model acquisition comparison methodologies. conclude perspectives project rise art. 1. P IERRE B ESSIERE , J UAN -M ANUEL A HUACTZIN O LIVIER YCARD D AVID ELLOT F RANCIS C OLAS HRISTOPHE OUE ULIEN IARD R UBEN G ARCIA ARLA K OIKE L EBELTEL ONAN E H Y OL IVIER M ALRAIT MMANUEL AZER AMEL EKHNACHA EDRIC RADALIER NNE S PALANZANI

参考文章(57)
John Alan Robinson, Logic, form and function ,(1979)
Julien Diard, La carte bayésienne : un modèle probabiliste hiérarchique pour la navigation en robotique mobile Institut National Polytechnique de Grenoble - INPG. ,(2003)
Kamel Mekhnacha, Olivier Lebeltel, Eric Dedieu, Emmanuel Mazer, Pierre Bessiere, Interprétation ou Description (II) : Fondements mathématiques de l'approche F+D Intellectica. pp. 313- 336 ,(1998)
Wolfram Burgard, Daniel Hennig, Timo Schmidt, Dieter Fox, Estimating the absolute position of a mobile robot using position probability grids national conference on artificial intelligence. pp. 896- 901 ,(1996)
D. J. C. Mackay, Introduction to Monte Carlo methods Proceedings of the NATO Advanced Study Institute on Learning in graphical models. pp. 175- 204 ,(1998) , 10.1007/978-94-011-5014-9_7
Jagat Narain Kapur, Hiremaglur K. Kesavan, Entropy optimization principles with applications ,(1992)
K. Mekhnacha, E. Mazer, P. Bessiere, A robotic CAD system using a Bayesian framework intelligent robots and systems. ,vol. 3, pp. 1597- 1604 ,(2000) , 10.1109/IROS.2000.895201