AutoLoss: Learning Discrete Schedules for Alternate Optimization

作者: Eric Xing , Ruslan Salakhutdinov , Xiaodan Liang , Zhiting Hu , Hao Zhang

DOI:

关键词: Discrete optimizationPolynomial regressionScheduleComputer scienceScheduling (computing)Machine learningPerceptronArtificial intelligence

摘要: Many machine learning problems involve iteratively and alternately optimizing different task objectives with respect to different sets of parameters. Appropriately scheduling the …

参考文章(34)
Ilya Sutskever, Geoffrey Hinton, James Martens, George Dahl, On the importance of initialization and momentum in deep learning international conference on machine learning. pp. 1139- 1147 ,(2013)
Léon Bottou, Large-Scale Machine Learning with Stochastic Gradient Descent Proceedings of COMPSTAT'2010. pp. 177- 186 ,(2010) , 10.1007/978-3-7908-2604-3_16
Diederik P. Kingma, Jimmy Ba, Adam: A Method for Stochastic Optimization arXiv: Learning. ,(2014)
Tianqi Chen, Emily B. Fox, Yi-An Ma, A Complete Recipe for Stochastic Gradient MCMC arXiv: Statistics Theory. ,(2015)
David Duvenaud, Ryan P. Adams, Dougal Maclaurin, Gradient-based Hyperparameter Optimization through Reversible Learning arXiv: Machine Learning. ,(2015)
T.K. Moon, The expectation-maximization algorithm IEEE Signal Processing Magazine. ,vol. 13, pp. 47- 60 ,(1996) , 10.1109/79.543975
Stephen J. Wright, Coordinate descent algorithms Mathematical Programming. ,vol. 151, pp. 3- 34 ,(2015) , 10.1007/S10107-015-0892-3
Sabine Brants, Stefanie Dipper, Peter Eisenberg, Silvia Hansen-Schirra, Esther König, Wolfgang Lezius, Christian Rohrer, George Smith, Hans Uszkoreit, TIGER: Linguistic Interpretation of a German Corpus Research on Language and Computation. ,vol. 2, pp. 597- 620 ,(2004) , 10.1007/S11168-004-7431-3
, Generative Adversarial Nets neural information processing systems. ,vol. 27, pp. 2672- 2680 ,(2014) , 10.3156/JSOFT.29.5_177_2