Elimination of perturbative crossings in adiabatic quantum optimization

作者: Neil G Dickson

DOI: 10.1088/1367-2630/13/7/073011

关键词: Adiabatic processStatistical physicsMaxima and minimaPhysicsExponential functionQuantum mechanicsSpace (mathematics)Ising modelPolynomialQuantumTime complexity

摘要: It was recently shown that, for solving NP-complete problems, adiabatic paths always exist without finite-order perturbative crossings between local and global minima, which could lead to anticrossings with exponentially small energy gaps if present. However, it not whether such a path be found easily. Here, we give simple construction that deterministically eliminates all in polynomial time, space energy, any Ising models final gap. Thus, order quantum optimization require exponential time solve problem, some quality other than this type of anticrossing must unavoidable necessitate long runtimes.

参考文章(9)
A. P. Young, S. Knysh, V. N. Smelyanskiy, First-order phase transition in the quantum adiabatic algorithm. Physical Review Letters. ,vol. 104, pp. 020502- ,(2010) , 10.1103/PHYSREVLETT.104.020502
Thomas Jörg, Florent Krzakala, Guilhem Semerjian, Francesco Zamponi, First-order transitions and the performance of quantum algorithms in random optimization problems. Physical Review Letters. ,vol. 104, pp. 207206- 207206 ,(2010) , 10.1103/PHYSREVLETT.104.207206
EDWARD FARHI, JEFFREY GOLDSTONE, SAM GUTMANN, DANIEL NAGAJ, HOW TO MAKE THE QUANTUM ADIABATIC ALGORITHM FAIL International Journal of Quantum Information. ,vol. 06, pp. 503- 516 ,(2008) , 10.1142/S021974990800358X
Neil G Dickson, MHS Amin, None, Does adiabatic quantum optimization fail for NP-complete problems? Physical Review Letters. ,vol. 106, pp. 050502- ,(2011) , 10.1103/PHYSREVLETT.106.050502
Boris Altshuler, Hari Krovi, Jérémie Roland, Anderson localization makes adiabatic quantum optimization fail Proceedings of the National Academy of Sciences of the United States of America. ,vol. 107, pp. 12446- 12450 ,(2010) , 10.1073/PNAS.1002116107
Mohammad HS Amin, Vicki Choi, First-order quantum phase transition in adiabatic quantum computation Physical Review A. ,vol. 80, pp. 062326- ,(2009) , 10.1103/PHYSREVA.80.062326
E. Farhi, J. Goldstone, S. Gutmann, J. Lapan, A. Lundgren, D. Preda, A Quantum Adiabatic Evolution Algorithm Applied to Random Instances of an NP-Complete Problem Science. ,vol. 292, pp. 472- 475 ,(2001) , 10.1126/SCIENCE.1057726
Marko Žnidarič, Martin Horvat, Exponential complexity of an adiabatic algorithm for an NP-complete problem Physical Review A. ,vol. 73, pp. 022329- ,(2006) , 10.1103/PHYSREVA.73.022329
Thomas Jörg, Florent Krzakala, Jorge Kurchan, Andrew Colin Maggs, Quantum Annealing of Hard Problems Progress of Theoretical Physics Supplement. ,vol. 184, pp. 290- 303 ,(2010) , 10.1143/PTPS.184.290