Auto-scaling techniques for elastic data stream processing

作者: Thomas Heinze , Valerio Pappalardo , Zbigniew Jerzak , Christof Fetzer

DOI: 10.1109/ICDEW.2014.6818344

关键词: Computer scienceScalingBig dataPoint (geometry)Work (physics)ScalabilityWorkloadConstant (mathematics)Real-time computingScale (ratio)

摘要: An elastic data stream processing system is able to handle changes in workload by dynamically scaling out and in. This allows for handling of unexpected load spikes without the need constant overprovisioning. One major challenges an find right point time scale or out. Finding such a difficult as it depends on constantly changing characteristics. In this paper we investigate application different auto-scaling techniques solving problem. Specifically: (1) formulate basic requirements technique used (2) use formulated select best auto (3) perform evaluation selected using real world data. Our experiments show that existing systems are performing worse than strategies our work.

参考文章(16)
M. R. Garey, E. G. Coffman, D. S. Johnson, Approximation algorithms for bin packing: a survey Approximation algorithms for NP-hard problems. pp. 46- 93 ,(1996)
Kirsten Hildrum, Kun-Lung Wu, Rohit Wagle, Deepak Rajan, Joel Wolf, Nikhil Bansal, Sujay Parekh, Lisa Fleischer, SODA: an optimizing scheduler for large-scale stream-based distributed computer systems acm ifip usenix international conference on middleware. pp. 306- 325 ,(2008) , 10.5555/1496950.1496970
Vincenzo Gulisano, Ricardo Jimenez-Peris, Marta Patino-Martinez, Claudio Soriente, Patrick Valduriez, StreamCloud: An Elastic and Scalable Data Streaming System IEEE Transactions on Parallel and Distributed Systems. ,vol. 23, pp. 2351- 2365 ,(2012) , 10.1109/TPDS.2012.24
Alexander Alexandrov, Max Heimel, Volker Markl, Dominic Battré, Fabian Hueske, Erik Nijkamp, Stephan Ewen, Odej Kao, Daniel Warneke, Massively parallel data analysis with PACTs on Nephele Proceedings of the VLDB Endowment. ,vol. 3, pp. 1625- 1628 ,(2010) , 10.14778/1920841.1921056
Javier Cervino, Evangelia Kalyvianaki, Joaquin Salvachua, Peter Pietzuch, Adaptive Provisioning of Stream Processing Systems in the Cloud international conference on data engineering. pp. 295- 301 ,(2012) , 10.1109/ICDEW.2012.40
Palden Lama, Xiaobo Zhou, Autonomic Provisioning with Self-Adaptive Neural Fuzzy Control for End-to-end Delay Guarantee modeling, analysis, and simulation on computer and telecommunication systems. pp. 151- 160 ,(2010) , 10.1109/MASCOTS.2010.24
Michael Armbrust, Armando Fox, Rean Griffith, Anthony D Joseph, Randy Katz, Andy Konwinski, Gunho Lee, David Patterson, Ariel Rabkin, Ion Stoica, Matei Zaharia, None, A view of cloud computing Communications of The ACM. ,vol. 53, pp. 50- 58 ,(2010) , 10.1145/1721654.1721672
Anurag S. Maskey, Nesime Tatbul, Wolfgang Lindner, Esther Ryvkina, Alexander Rasin, Mitch Cherniack, Stan Zdonik, Ying Xing, Daniel J. Abadi, Magdalena Balazinska, Yanif Ahmad, Jeong-Hyon Hwang, The Design of the Borealis Stream Processing Engine conference on innovative data systems research. pp. 277- 289 ,(2005)
Ying Xing, S. Zdonik, Jeong-Hyon Hwang, Dynamic load distribution in the Borealis stream processor international conference on data engineering. pp. 791- 802 ,(2005) , 10.1109/ICDE.2005.53
Zbigniew Jerzak, Thomas Heinze, Matthias Fehr, Daniel Gröber, Raik Hartung, Nenad Stojanovic, The DEBS 2012 grand challenge distributed event-based systems. pp. 393- 398 ,(2012) , 10.1145/2335484.2335536