Boundary Layer Analysis for Some Problems of Singular Domain Perturbation

作者: H. J. Weinitschke

DOI: 10.1007/978-3-642-73933-0_2

关键词: Reactor pressure vesselMechanicsPerturbation (astronomy)GeometryStress concentrationMathematicsBucklingBoundary layerBifurcationSmall holeChemical reactor

摘要: This article is concerned with analyzing the effect of small circular holes in a plane domain on solution certain nonlinear boundary value problems. Apart from its intrinsic mathematical interest, this problem has various applications. Examples include stress concentration thin elastic membranes and shells at edge hole, buckling plates shells, which may be bifurcation or snapping type. It usually much simpler to calculate stresses critical loads for shell without hole. Therefore, it interest assess asymptotically singular perturbation loads. Another application relates tubular chemical reactors, where internal cooling pipes diameter are inserted into reactor vessel.

参考文章(7)
Hans Grabmüller, Finite displacements of annular elastic membranes Journal of Elasticity. ,vol. 16, pp. 135- 147 ,(1986) , 10.1007/BF00043581
Shin Ozawa, Singular variation of domains and eigenvalues of the Laplacian Duke Mathematical Journal. ,vol. 48, pp. 767- 778 ,(1981) , 10.1215/S0012-7094-81-04842-0
Lawrence E. Levine, Julian D. Cole, Perturbation Methods in Applied Mathematics ,(1985)
H.J. Weinitschke, On the calculation of limit and bifurcation points in stability problems of elastic shells International Journal of Solids and Structures. ,vol. 21, pp. 79- 95 ,(1985) , 10.1016/0020-7683(85)90106-4
P. A. Lagerstrom, R. G. Casten, Basic Concepts Underlying Singular Perturbation Techniques SIAM Review. ,vol. 14, pp. 63- 120 ,(1972) , 10.1137/1014002
Frederic YM Wan, Hubertus J Weinitschke, None, Boundary layer solutions for some nonlinear elastic membrane problems Zeitschrift für Angewandte Mathematik und Physik. ,vol. 38, pp. 79- 91 ,(1987) , 10.1007/BF00944922
Hubertus J. Weinitschke, Charles G. Lange, Asymptotic solutions for finite deformation of thin shells of revolution with a small circular hole Quarterly of Applied Mathematics. ,vol. 45, pp. 401- 417 ,(1987) , 10.1090/QAM/910449