Cellular automata finite element (CAFE) model to predict the forming of friction stir welded blanks

作者: Ravindra Singh Saluja , R. Ganesh Narayanan , Sumitesh Das

DOI: 10.1016/J.COMMATSCI.2012.01.036

关键词: Work (thermodynamics)WeldingFinite element methodMaterials scienceBlankMetallurgyParticle-size distributionStress concentrationFriction stir weldingGrain sizeComposite material

摘要: Abstract The main aim of the present work is to develop a cellular automata coupled finite element (CAFE) model predict grain size distribution during friction stir welding (FSW) and influence weld defects (like voids) on forming FSW sheets. In order achieve this, process simulated just by applying thermal strain-rate analytical models elements constituting blanks using ABAQUS6.8 (FE) code with help DFLUX sub-routine. A uniform grid mesh within each for accommodate generated calculation. sheet used Al6061-T6 dimension 300 × 100 × 2.1 mm. final yield strength are predicted generating transition rules, relating them temperature, strain evolved welding. computed results compared experimental validation. (true stress–strain) behavior was containing two different methods their accuracy compared. followed in this temperature across region consistently. matching well available data. predictions through CAFE agreeing all conditions. true stress–strain blank obtained from CA (containing history after FSW) coincides FE simulations. model, stress concentration factor, successfully predicts tensile behavior. both (METHOD 1 METHOD 2) coinciding other, except at initial stages forming.

参考文章(32)
C. Hamilton, S. Dymek, A. Sommers, A thermal model of friction stir welding in aluminum alloys International Journal of Machine Tools and Manufacture. ,vol. 48, pp. 1120- 1130 ,(2008) , 10.1016/J.IJMACHTOOLS.2008.02.001
S. Das, M.F. Abbod, Q. Zhu, E.J. Palmiere, I.C. Howard, D.A. Linkens, A combined neuro fuzzy-cellular automata based material model for finite element simulation of plane strain compression Computational Materials Science. ,vol. 40, pp. 366- 375 ,(2007) , 10.1016/J.COMMATSCI.2007.01.010
D. Jacquin, B. de Meester, A. Simar, D. Deloison, F. Montheillet, C. Desrayaud, A simple Eulerian thermomechanical modeling of friction stir welding Journal of Materials Processing Technology. ,vol. 211, pp. 57- 65 ,(2011) , 10.1016/J.JMATPROTEC.2010.08.016
D.E. Boyce, P.R. Dawson, B. Sidle, T. Gnäupel-Herold, A multiscale methodology for deformation modeling applied to friction stir welded steel Computational Materials Science. ,vol. 38, pp. 158- 175 ,(2006) , 10.1016/J.COMMATSCI.2006.01.021
Xiaomin Deng, Shaowen Xu, Two-dimensional finite element simulation of material flow in the friction stir welding process Journal of Manufacturing Processes. ,vol. 6, pp. 125- 133 ,(2004) , 10.1016/S1526-6125(04)70066-3
P. Ulysse, Three-dimensional modeling of the friction stir-welding process International Journal of Machine Tools & Manufacture. ,vol. 42, pp. 1549- 1557 ,(2002) , 10.1016/S0890-6955(02)00114-1
S. J. Wu, C. L. Davis, A. Shterenlikht, I. C. Howard, Modeling the ductile-brittle transition behavior in thermomechanically controlled rolled steels Metallurgical and Materials Transactions A-physical Metallurgy and Materials Science. ,vol. 36, pp. 989- 997 ,(2005) , 10.1007/S11661-005-0292-Z
Ciro Bitondo, Umberto Prisco, Antonino Squilace, Pasquale Buonadonna, Gennaro Dionoro, Friction-stir welding of AA 2198 butt joints: mechanical characterization of the process and of the welds through DOE analysis The International Journal of Advanced Manufacturing Technology. ,vol. 53, pp. 505- 516 ,(2011) , 10.1007/S00170-010-2879-9