The role of inertia on fluid flow through disordered porous media

作者: U.M.S. Costa , J.S.Andrade Jr. , H.A. Makse , H.E. Stanley

DOI: 10.1016/S0378-4371(98)00624-4

关键词: Fluid dynamicsMathematicsHele-Shaw flowDarcy's lawInertiaReynolds equationPorous mediumClassical mechanicsReynolds numberMechanicsPhenomenological model

摘要: Abstract We study the fluid flow through disordered porous media by numerically solving complete set of Navier–Stokes equations in a two-dimensional lattice with spatially random distribution solid obstacles (plaquettes). simulate viscous and non-viscous these idealized pore spaces to determine origin deviations from classical Darcy's law behavior. Due nonlinear contribution inertia transport momentum at scale, we observe typical departure sufficiently high Reynolds numbers. Moreover, show that Forchheimer equation provides valid phenomenological model correlate variations friction factor over wide range conditions.

参考文章(8)
Pierre M. Adler, Porous media : geometry and transports Butterworth-Heinemann. ,(1992)
L. M. Schwartz, N. Martys, D. P. Bentz, E. J. Garboczi, S. Torquato, Cross-property relations and permeability estimation in model porous media. Physical Review E. ,vol. 48, pp. 4584- 4591 ,(1993) , 10.1103/PHYSREVE.48.4584
J. S. Andrade, D. A. Street, T. Shinohara, Y. Shibusa, Y. Arai, Percolation disorder in viscous and nonviscous flow through porous media. Physical Review E. ,vol. 51, pp. 5725- 5731 ,(1995) , 10.1103/PHYSREVE.51.5725
Nicos S. Martys, S. Torquato, D. P. Bentz, Universal scaling of fluid permeability for sphere packings Physical Review E. ,vol. 50, pp. 403- 408 ,(1994) , 10.1103/PHYSREVE.50.403
Suhas V. Patankar, Numerical heat transfer and fluid flow ,(1980)
M Sahimi, M Sahini, Applications of percolation theory ,(1994)
F.A.L. DULLIEN, 3 – Pore Structure Porous Media#R##N#Fluid Transport and Pore Structure. pp. 75- 155 ,(1979) , 10.1016/B978-0-12-223650-1.50008-5